forked from KEMT/zpwiki
		
	update
This commit is contained in:
		
							parent
							
								
									bf640d92f7
								
							
						
					
					
						commit
						417a3c9319
					
				
							
								
								
									
										13
									
								
								pages/students/2016/darius_lindvai/dp2021/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								pages/students/2016/darius_lindvai/dp2021/README.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,13 @@ | ||||
| ## Update 09.04.2020 | ||||
| - Upravil som vzorový zdrojový kód, ktorý riešil Named-Entity Recognition, tak, aby dopĺňal interpunkciu. | ||||
| - Momentálne to funguje s ručne vpísanými trénovacími dátami a ručným "otagovaním", avšak iba pre bodku a otáznik. | ||||
| - Keď som skúšal použiť dáta, kde bol aj otáznik, ale namiesto otáznika model doplňoval bodku. | ||||
| 
 | ||||
| vysvetlenie zápisu dát: | ||||
| - v texte som nahradil interpunciu slovami, resp. skratkami ('.' -> 'PER', ',' -> 'COM', '?' -> '.QUE') | ||||
| - sekvencie slov som označil ako "S", nerozlišoval som slovné druhy | ||||
| - interpunkčné znamienka som označil ako "C" (pre čiarku), "P" (pre bodku) a "Q" (pre otáznik) | ||||
| 
 | ||||
| vysvetlenie výstupu:  | ||||
| - Prvý tensor je predikcia modelu pred trénovaním. | ||||
| - Druhý tensor je predikcia po trénovaní. | ||||
							
								
								
									
										221
									
								
								pages/students/2016/darius_lindvai/dp2021/punc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										221
									
								
								pages/students/2016/darius_lindvai/dp2021/punc.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,221 @@ | ||||
| import torch | ||||
| import torch.autograd as autograd | ||||
| import torch.nn as nn | ||||
| import torch.optim as optim | ||||
| 
 | ||||
| torch.manual_seed(1) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def argmax(vec): | ||||
|     # return the argmax as a python int | ||||
|     _, idx = torch.max(vec, 1) | ||||
|     return idx.item() | ||||
| 
 | ||||
| 
 | ||||
| def prepare_sequence(seq, to_ix): | ||||
|     idxs = [to_ix[w] for w in seq] | ||||
|     return torch.tensor(idxs, dtype=torch.long) | ||||
| 
 | ||||
| 
 | ||||
| # Compute log sum exp in a numerically stable way for the forward algorithm | ||||
| def log_sum_exp(vec): | ||||
|     max_score = vec[0, argmax(vec)] | ||||
|     max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) | ||||
|     return max_score + \ | ||||
|         torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| class BiLSTM_CRF(nn.Module): | ||||
| 
 | ||||
|     def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim): | ||||
|         super(BiLSTM_CRF, self).__init__() | ||||
|         self.embedding_dim = embedding_dim | ||||
|         self.hidden_dim = hidden_dim | ||||
|         self.vocab_size = vocab_size | ||||
|         self.tag_to_ix = tag_to_ix | ||||
|         self.tagset_size = len(tag_to_ix) | ||||
| 
 | ||||
|         self.word_embeds = nn.Embedding(vocab_size, embedding_dim) | ||||
|         self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, | ||||
|                             num_layers=1, bidirectional=True) | ||||
| 
 | ||||
|         # Maps the output of the LSTM into tag space. | ||||
|         self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) | ||||
| 
 | ||||
|         # Matrix of transition parameters.  Entry i,j is the score of | ||||
|         # transitioning *to* i *from* j. | ||||
|         self.transitions = nn.Parameter( | ||||
|             torch.randn(self.tagset_size, self.tagset_size)) | ||||
| 
 | ||||
|         # These two statements enforce the constraint that we never transfer | ||||
|         # to the start tag and we never transfer from the stop tag | ||||
|         self.transitions.data[tag_to_ix[START_TAG], :] = -10000 | ||||
|         self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 | ||||
| 
 | ||||
|         self.hidden = self.init_hidden() | ||||
| 
 | ||||
|     def init_hidden(self): | ||||
|         return (torch.randn(2, 1, self.hidden_dim // 2), | ||||
|                 torch.randn(2, 1, self.hidden_dim // 2)) | ||||
| 
 | ||||
|     def _forward_alg(self, feats): | ||||
|         # Forward algorithm to compute the partition function | ||||
|         init_alphas = torch.full((1, self.tagset_size), -10000.) | ||||
|         # START_TAG has all of the score. | ||||
|         init_alphas[0][self.tag_to_ix[START_TAG]] = 0. | ||||
| 
 | ||||
|         # Wrap in a variable so that we will get automatic backprop | ||||
|         forward_var = init_alphas | ||||
| 
 | ||||
|         # Iterate through the sentence | ||||
|         for feat in feats: | ||||
|             alphas_t = []  # The forward tensors at this timestep | ||||
|             for next_tag in range(self.tagset_size): | ||||
|                 # broadcast the emission score: it is the same regardless of the previous tag | ||||
|                 emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) | ||||
|                 # the ith entry of trans_score is the score of transitioning to next_tag from i | ||||
|                 trans_score = self.transitions[next_tag].view(1, -1) | ||||
|                 # The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp | ||||
|                 next_tag_var = forward_var + trans_score + emit_score | ||||
|                 # The forward variable for this tag is log-sum-exp of all the scores. | ||||
|                 alphas_t.append(log_sum_exp(next_tag_var).view(1)) | ||||
|             forward_var = torch.cat(alphas_t).view(1, -1) | ||||
|         terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] | ||||
|         alpha = log_sum_exp(terminal_var) | ||||
|         return alpha | ||||
| 
 | ||||
|     def _get_lstm_features(self, sentence): | ||||
|         self.hidden = self.init_hidden() | ||||
|         embeds = self.word_embeds(sentence).view(len(sentence), 1, -1) | ||||
|         lstm_out, self.hidden = self.lstm(embeds, self.hidden) | ||||
|         lstm_out = lstm_out.view(len(sentence), self.hidden_dim) | ||||
|         lstm_feats = self.hidden2tag(lstm_out) | ||||
|         return lstm_feats | ||||
| 
 | ||||
|     def _score_sentence(self, feats, tags): | ||||
|         # Gives the score of a provided tag sequence | ||||
|         score = torch.zeros(1) | ||||
|         tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) | ||||
|         for i, feat in enumerate(feats): | ||||
|             score = score + \ | ||||
|                 self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] | ||||
|         score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] | ||||
|         return score | ||||
| 
 | ||||
|     def _viterbi_decode(self, feats): | ||||
|         backpointers = [] | ||||
| 
 | ||||
|         # Initialize the viterbi variables in log space | ||||
|         init_vvars = torch.full((1, self.tagset_size), -10000.) | ||||
|         init_vvars[0][self.tag_to_ix[START_TAG]] = 0 | ||||
| 
 | ||||
|         # forward_var at step i holds the viterbi variables for step i-1 | ||||
|         forward_var = init_vvars | ||||
|         for feat in feats: | ||||
|             bptrs_t = []  # holds the backpointers for this step | ||||
|             viterbivars_t = []  # holds the viterbi variables for this step | ||||
| 
 | ||||
|             for next_tag in range(self.tagset_size): | ||||
|                 # next_tag_var[i] holds the viterbi variable for tag i at the | ||||
|                 # previous step, plus the score of transitioning | ||||
|                 # from tag i to next_tag. | ||||
|                 # We don't include the emission scores here because the max | ||||
|                 # does not depend on them (we add them in below) | ||||
|                 next_tag_var = forward_var + self.transitions[next_tag] | ||||
|                 best_tag_id = argmax(next_tag_var) | ||||
|                 bptrs_t.append(best_tag_id) | ||||
|                 viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) | ||||
|             # Now add in the emission scores, and assign forward_var to the set | ||||
|             # of viterbi variables we just computed | ||||
|             forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) | ||||
|             backpointers.append(bptrs_t) | ||||
| 
 | ||||
|         # Transition to STOP_TAG | ||||
|         terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] | ||||
|         best_tag_id = argmax(terminal_var) | ||||
|         path_score = terminal_var[0][best_tag_id] | ||||
| 
 | ||||
|         # Follow the back pointers to decode the best path. | ||||
|         best_path = [best_tag_id] | ||||
|         for bptrs_t in reversed(backpointers): | ||||
|             best_tag_id = bptrs_t[best_tag_id] | ||||
|             best_path.append(best_tag_id) | ||||
|         # Pop off the start tag (we dont want to return that to the caller) | ||||
|         start = best_path.pop() | ||||
|         assert start == self.tag_to_ix[START_TAG]  # Sanity check | ||||
|         best_path.reverse() | ||||
|         return path_score, best_path | ||||
| 
 | ||||
|     def neg_log_likelihood(self, sentence, tags): | ||||
|         feats = self._get_lstm_features(sentence) | ||||
|         forward_score = self._forward_alg(feats) | ||||
|         gold_score = self._score_sentence(feats, tags) | ||||
|         return forward_score - gold_score | ||||
| 
 | ||||
|     def forward(self, sentence): | ||||
|         # Get the emission scores from the BiLSTM | ||||
|         lstm_feats = self._get_lstm_features(sentence) | ||||
| 
 | ||||
|         # Find the best path, given the features. | ||||
|         score, tag_seq = self._viterbi_decode(lstm_feats) | ||||
|         return score, tag_seq | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| START_TAG = "<START>" | ||||
| STOP_TAG = "<STOP>" | ||||
| EMBEDDING_DIM = 5 | ||||
| HIDDEN_DIM = 4 | ||||
| 
 | ||||
| training_data = [( | ||||
|     "hovorí sa ,COM že ľudstvo postihuje nová epidémia ,COM šíriaca sa závratnou rýchlosťou .PER preto je dôležité vedieť čo to je ,COM ako jej predísť alebo ako ju odstrániť .PER".split(), | ||||
|     "S S C S S S S S C S S S S P S S S S S S S C S S S S S S S P".split() | ||||
| ), ( | ||||
|     "nárast obezity je spôsobený najmä spôsobom života .PER tuky zlepšujú chuť do jedla a dávajú lepší pocit sýtosti ,COM uvedomte si však ,COM že všetky tuky sa Vám ukladajú ,COM pokiaľ ich nespálite .PER".split(), | ||||
|     "S S S S S S S P S S S S S S S S S S C S S S C S S S S S S C S S S P".split() | ||||
| )] | ||||
| 
 | ||||
| word_to_ix = {} | ||||
| for sentence, tags in training_data: | ||||
|     for word in sentence: | ||||
|         if word not in word_to_ix: | ||||
|             word_to_ix[word] = len(word_to_ix) | ||||
| 
 | ||||
| tag_to_ix = {"S": 0, "C": 1, "P": 2, "E": 3, START_TAG: 4, STOP_TAG: 5} | ||||
| 
 | ||||
| model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) | ||||
| optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) | ||||
| 
 | ||||
| with torch.no_grad(): | ||||
|     precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) | ||||
|     precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long) | ||||
|     print("Predicted output before training: ", model(precheck_sent)) | ||||
| 
 | ||||
| for epoch in range(300):  # normally you would NOT do 300 epochs, but this is small dataset | ||||
|     for sentence, tags in training_data: | ||||
|         # Step 1. Remember that Pytorch accumulates gradients. | ||||
|         # We need to clear them out before each instance | ||||
|         model.zero_grad() | ||||
| 
 | ||||
|         # Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices. | ||||
|         sentence_in = prepare_sequence(sentence, word_to_ix) | ||||
|         targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) | ||||
| 
 | ||||
|         # Step 3. Run our forward pass. | ||||
|         loss = model.neg_log_likelihood(sentence_in, targets) | ||||
| 
 | ||||
|         # Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step() | ||||
|         loss.backward() | ||||
|         optimizer.step() | ||||
| 
 | ||||
| with torch.no_grad(): | ||||
|     precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) | ||||
|     print("Predicted output after training: ", model(precheck_sent)) | ||||
							
								
								
									
										11
									
								
								pages/students/2016/darius_lindvai/dp2021/script1.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										11
									
								
								pages/students/2016/darius_lindvai/dp2021/script1.py
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,11 @@ | ||||
| # coding: utf-8 | ||||
| #!/usr/bin/python | ||||
| 
 | ||||
| import codecs | ||||
| import sys | ||||
| 
 | ||||
| with codecs.open(sys.argv[2],'w') as out_txt: | ||||
|         with codecs.open(sys.argv[1],'r') as text: | ||||
|             for line in text: | ||||
|                 line = line.replace('.','PER').replace(',','COM').replace('?','QUE') | ||||
|                 out_txt.write(line) | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user