forked from KEMT/zpwiki
		
	update
This commit is contained in:
		
							parent
							
								
									bf640d92f7
								
							
						
					
					
						commit
						417a3c9319
					
				
							
								
								
									
										13
									
								
								pages/students/2016/darius_lindvai/dp2021/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								pages/students/2016/darius_lindvai/dp2021/README.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,13 @@ | |||||||
|  | ## Update 09.04.2020 | ||||||
|  | - Upravil som vzorový zdrojový kód, ktorý riešil Named-Entity Recognition, tak, aby dopĺňal interpunkciu. | ||||||
|  | - Momentálne to funguje s ručne vpísanými trénovacími dátami a ručným "otagovaním", avšak iba pre bodku a otáznik. | ||||||
|  | - Keď som skúšal použiť dáta, kde bol aj otáznik, ale namiesto otáznika model doplňoval bodku. | ||||||
|  | 
 | ||||||
|  | vysvetlenie zápisu dát: | ||||||
|  | - v texte som nahradil interpunciu slovami, resp. skratkami ('.' -> 'PER', ',' -> 'COM', '?' -> '.QUE') | ||||||
|  | - sekvencie slov som označil ako "S", nerozlišoval som slovné druhy | ||||||
|  | - interpunkčné znamienka som označil ako "C" (pre čiarku), "P" (pre bodku) a "Q" (pre otáznik) | ||||||
|  | 
 | ||||||
|  | vysvetlenie výstupu:  | ||||||
|  | - Prvý tensor je predikcia modelu pred trénovaním. | ||||||
|  | - Druhý tensor je predikcia po trénovaní. | ||||||
							
								
								
									
										221
									
								
								pages/students/2016/darius_lindvai/dp2021/punc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										221
									
								
								pages/students/2016/darius_lindvai/dp2021/punc.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,221 @@ | |||||||
|  | import torch | ||||||
|  | import torch.autograd as autograd | ||||||
|  | import torch.nn as nn | ||||||
|  | import torch.optim as optim | ||||||
|  | 
 | ||||||
|  | torch.manual_seed(1) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def argmax(vec): | ||||||
|  |     # return the argmax as a python int | ||||||
|  |     _, idx = torch.max(vec, 1) | ||||||
|  |     return idx.item() | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def prepare_sequence(seq, to_ix): | ||||||
|  |     idxs = [to_ix[w] for w in seq] | ||||||
|  |     return torch.tensor(idxs, dtype=torch.long) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | # Compute log sum exp in a numerically stable way for the forward algorithm | ||||||
|  | def log_sum_exp(vec): | ||||||
|  |     max_score = vec[0, argmax(vec)] | ||||||
|  |     max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) | ||||||
|  |     return max_score + \ | ||||||
|  |         torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | class BiLSTM_CRF(nn.Module): | ||||||
|  | 
 | ||||||
|  |     def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim): | ||||||
|  |         super(BiLSTM_CRF, self).__init__() | ||||||
|  |         self.embedding_dim = embedding_dim | ||||||
|  |         self.hidden_dim = hidden_dim | ||||||
|  |         self.vocab_size = vocab_size | ||||||
|  |         self.tag_to_ix = tag_to_ix | ||||||
|  |         self.tagset_size = len(tag_to_ix) | ||||||
|  | 
 | ||||||
|  |         self.word_embeds = nn.Embedding(vocab_size, embedding_dim) | ||||||
|  |         self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, | ||||||
|  |                             num_layers=1, bidirectional=True) | ||||||
|  | 
 | ||||||
|  |         # Maps the output of the LSTM into tag space. | ||||||
|  |         self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) | ||||||
|  | 
 | ||||||
|  |         # Matrix of transition parameters.  Entry i,j is the score of | ||||||
|  |         # transitioning *to* i *from* j. | ||||||
|  |         self.transitions = nn.Parameter( | ||||||
|  |             torch.randn(self.tagset_size, self.tagset_size)) | ||||||
|  | 
 | ||||||
|  |         # These two statements enforce the constraint that we never transfer | ||||||
|  |         # to the start tag and we never transfer from the stop tag | ||||||
|  |         self.transitions.data[tag_to_ix[START_TAG], :] = -10000 | ||||||
|  |         self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 | ||||||
|  | 
 | ||||||
|  |         self.hidden = self.init_hidden() | ||||||
|  | 
 | ||||||
|  |     def init_hidden(self): | ||||||
|  |         return (torch.randn(2, 1, self.hidden_dim // 2), | ||||||
|  |                 torch.randn(2, 1, self.hidden_dim // 2)) | ||||||
|  | 
 | ||||||
|  |     def _forward_alg(self, feats): | ||||||
|  |         # Forward algorithm to compute the partition function | ||||||
|  |         init_alphas = torch.full((1, self.tagset_size), -10000.) | ||||||
|  |         # START_TAG has all of the score. | ||||||
|  |         init_alphas[0][self.tag_to_ix[START_TAG]] = 0. | ||||||
|  | 
 | ||||||
|  |         # Wrap in a variable so that we will get automatic backprop | ||||||
|  |         forward_var = init_alphas | ||||||
|  | 
 | ||||||
|  |         # Iterate through the sentence | ||||||
|  |         for feat in feats: | ||||||
|  |             alphas_t = []  # The forward tensors at this timestep | ||||||
|  |             for next_tag in range(self.tagset_size): | ||||||
|  |                 # broadcast the emission score: it is the same regardless of the previous tag | ||||||
|  |                 emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size) | ||||||
|  |                 # the ith entry of trans_score is the score of transitioning to next_tag from i | ||||||
|  |                 trans_score = self.transitions[next_tag].view(1, -1) | ||||||
|  |                 # The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp | ||||||
|  |                 next_tag_var = forward_var + trans_score + emit_score | ||||||
|  |                 # The forward variable for this tag is log-sum-exp of all the scores. | ||||||
|  |                 alphas_t.append(log_sum_exp(next_tag_var).view(1)) | ||||||
|  |             forward_var = torch.cat(alphas_t).view(1, -1) | ||||||
|  |         terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] | ||||||
|  |         alpha = log_sum_exp(terminal_var) | ||||||
|  |         return alpha | ||||||
|  | 
 | ||||||
|  |     def _get_lstm_features(self, sentence): | ||||||
|  |         self.hidden = self.init_hidden() | ||||||
|  |         embeds = self.word_embeds(sentence).view(len(sentence), 1, -1) | ||||||
|  |         lstm_out, self.hidden = self.lstm(embeds, self.hidden) | ||||||
|  |         lstm_out = lstm_out.view(len(sentence), self.hidden_dim) | ||||||
|  |         lstm_feats = self.hidden2tag(lstm_out) | ||||||
|  |         return lstm_feats | ||||||
|  | 
 | ||||||
|  |     def _score_sentence(self, feats, tags): | ||||||
|  |         # Gives the score of a provided tag sequence | ||||||
|  |         score = torch.zeros(1) | ||||||
|  |         tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) | ||||||
|  |         for i, feat in enumerate(feats): | ||||||
|  |             score = score + \ | ||||||
|  |                 self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]] | ||||||
|  |         score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] | ||||||
|  |         return score | ||||||
|  | 
 | ||||||
|  |     def _viterbi_decode(self, feats): | ||||||
|  |         backpointers = [] | ||||||
|  | 
 | ||||||
|  |         # Initialize the viterbi variables in log space | ||||||
|  |         init_vvars = torch.full((1, self.tagset_size), -10000.) | ||||||
|  |         init_vvars[0][self.tag_to_ix[START_TAG]] = 0 | ||||||
|  | 
 | ||||||
|  |         # forward_var at step i holds the viterbi variables for step i-1 | ||||||
|  |         forward_var = init_vvars | ||||||
|  |         for feat in feats: | ||||||
|  |             bptrs_t = []  # holds the backpointers for this step | ||||||
|  |             viterbivars_t = []  # holds the viterbi variables for this step | ||||||
|  | 
 | ||||||
|  |             for next_tag in range(self.tagset_size): | ||||||
|  |                 # next_tag_var[i] holds the viterbi variable for tag i at the | ||||||
|  |                 # previous step, plus the score of transitioning | ||||||
|  |                 # from tag i to next_tag. | ||||||
|  |                 # We don't include the emission scores here because the max | ||||||
|  |                 # does not depend on them (we add them in below) | ||||||
|  |                 next_tag_var = forward_var + self.transitions[next_tag] | ||||||
|  |                 best_tag_id = argmax(next_tag_var) | ||||||
|  |                 bptrs_t.append(best_tag_id) | ||||||
|  |                 viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) | ||||||
|  |             # Now add in the emission scores, and assign forward_var to the set | ||||||
|  |             # of viterbi variables we just computed | ||||||
|  |             forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) | ||||||
|  |             backpointers.append(bptrs_t) | ||||||
|  | 
 | ||||||
|  |         # Transition to STOP_TAG | ||||||
|  |         terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] | ||||||
|  |         best_tag_id = argmax(terminal_var) | ||||||
|  |         path_score = terminal_var[0][best_tag_id] | ||||||
|  | 
 | ||||||
|  |         # Follow the back pointers to decode the best path. | ||||||
|  |         best_path = [best_tag_id] | ||||||
|  |         for bptrs_t in reversed(backpointers): | ||||||
|  |             best_tag_id = bptrs_t[best_tag_id] | ||||||
|  |             best_path.append(best_tag_id) | ||||||
|  |         # Pop off the start tag (we dont want to return that to the caller) | ||||||
|  |         start = best_path.pop() | ||||||
|  |         assert start == self.tag_to_ix[START_TAG]  # Sanity check | ||||||
|  |         best_path.reverse() | ||||||
|  |         return path_score, best_path | ||||||
|  | 
 | ||||||
|  |     def neg_log_likelihood(self, sentence, tags): | ||||||
|  |         feats = self._get_lstm_features(sentence) | ||||||
|  |         forward_score = self._forward_alg(feats) | ||||||
|  |         gold_score = self._score_sentence(feats, tags) | ||||||
|  |         return forward_score - gold_score | ||||||
|  | 
 | ||||||
|  |     def forward(self, sentence): | ||||||
|  |         # Get the emission scores from the BiLSTM | ||||||
|  |         lstm_feats = self._get_lstm_features(sentence) | ||||||
|  | 
 | ||||||
|  |         # Find the best path, given the features. | ||||||
|  |         score, tag_seq = self._viterbi_decode(lstm_feats) | ||||||
|  |         return score, tag_seq | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | START_TAG = "<START>" | ||||||
|  | STOP_TAG = "<STOP>" | ||||||
|  | EMBEDDING_DIM = 5 | ||||||
|  | HIDDEN_DIM = 4 | ||||||
|  | 
 | ||||||
|  | training_data = [( | ||||||
|  |     "hovorí sa ,COM že ľudstvo postihuje nová epidémia ,COM šíriaca sa závratnou rýchlosťou .PER preto je dôležité vedieť čo to je ,COM ako jej predísť alebo ako ju odstrániť .PER".split(), | ||||||
|  |     "S S C S S S S S C S S S S P S S S S S S S C S S S S S S S P".split() | ||||||
|  | ), ( | ||||||
|  |     "nárast obezity je spôsobený najmä spôsobom života .PER tuky zlepšujú chuť do jedla a dávajú lepší pocit sýtosti ,COM uvedomte si však ,COM že všetky tuky sa Vám ukladajú ,COM pokiaľ ich nespálite .PER".split(), | ||||||
|  |     "S S S S S S S P S S S S S S S S S S C S S S C S S S S S S C S S S P".split() | ||||||
|  | )] | ||||||
|  | 
 | ||||||
|  | word_to_ix = {} | ||||||
|  | for sentence, tags in training_data: | ||||||
|  |     for word in sentence: | ||||||
|  |         if word not in word_to_ix: | ||||||
|  |             word_to_ix[word] = len(word_to_ix) | ||||||
|  | 
 | ||||||
|  | tag_to_ix = {"S": 0, "C": 1, "P": 2, "E": 3, START_TAG: 4, STOP_TAG: 5} | ||||||
|  | 
 | ||||||
|  | model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) | ||||||
|  | optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) | ||||||
|  | 
 | ||||||
|  | with torch.no_grad(): | ||||||
|  |     precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) | ||||||
|  |     precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long) | ||||||
|  |     print("Predicted output before training: ", model(precheck_sent)) | ||||||
|  | 
 | ||||||
|  | for epoch in range(300):  # normally you would NOT do 300 epochs, but this is small dataset | ||||||
|  |     for sentence, tags in training_data: | ||||||
|  |         # Step 1. Remember that Pytorch accumulates gradients. | ||||||
|  |         # We need to clear them out before each instance | ||||||
|  |         model.zero_grad() | ||||||
|  | 
 | ||||||
|  |         # Step 2. Get our inputs ready for the network, that is, turn them into Tensors of word indices. | ||||||
|  |         sentence_in = prepare_sequence(sentence, word_to_ix) | ||||||
|  |         targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) | ||||||
|  | 
 | ||||||
|  |         # Step 3. Run our forward pass. | ||||||
|  |         loss = model.neg_log_likelihood(sentence_in, targets) | ||||||
|  | 
 | ||||||
|  |         # Step 4. Compute the loss, gradients, and update the parameters by calling optimizer.step() | ||||||
|  |         loss.backward() | ||||||
|  |         optimizer.step() | ||||||
|  | 
 | ||||||
|  | with torch.no_grad(): | ||||||
|  |     precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) | ||||||
|  |     print("Predicted output after training: ", model(precheck_sent)) | ||||||
							
								
								
									
										11
									
								
								pages/students/2016/darius_lindvai/dp2021/script1.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										11
									
								
								pages/students/2016/darius_lindvai/dp2021/script1.py
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,11 @@ | |||||||
|  | # coding: utf-8 | ||||||
|  | #!/usr/bin/python | ||||||
|  | 
 | ||||||
|  | import codecs | ||||||
|  | import sys | ||||||
|  | 
 | ||||||
|  | with codecs.open(sys.argv[2],'w') as out_txt: | ||||||
|  |         with codecs.open(sys.argv[1],'r') as text: | ||||||
|  |             for line in text: | ||||||
|  |                 line = line.replace('.','PER').replace(',','COM').replace('?','QUE') | ||||||
|  |                 out_txt.write(line) | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user