BC_Matsunych_2020_Final/Create_Model.py

65 lines
1.7 KiB
Python
Raw Permalink Normal View History

2020-08-28 10:38:38 +00:00
from numpy import array
from pickle import dump
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.callbacks import CSVLogger
# load doc into memory
def load_doc(filename):
# open the file as read only
file = open(filename, 'r')
# read all text
text = file.read()
# close the file
file.close()
return text
# load
in_filename = 'char_sequences.txt'
raw_text = load_doc(in_filename)
lines = raw_text.split('\n')
# integer encode sequences of characters
chars = sorted(list(set(raw_text)))
mapping = dict((c, i) for i, c in enumerate(chars))
sequences = list()
for line in lines:
# integer encode line
encoded_seq = [mapping[char] for char in line]
# store
sequences.append(encoded_seq)
# vocabulary size
vocab_size = len(mapping)
print('Vocabulary Size: %d' % vocab_size)
# separate into input and output
sequences = array(sequences)
X, y = sequences[:, :-1], sequences[:, -1]
sequences = [to_categorical(x, num_classes=vocab_size) for x in X]
X = array(sequences)
y = to_categorical(y, num_classes=vocab_size)
# define model
model = Sequential()
model.add(LSTM(250, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(LSTM(250, return_sequences=True))
model.add((LSTM(250)))
model.add(Dense(vocab_size, activation='softmax'))
# compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# print(model.summary())
# fit model
csv_logger = CSVLogger('log.csv', append=True, separator=';')
model.fit(X, y, epochs=30, verbose=2, callbacks=[csv_logger])
# save the model to file
model.save('model.h5')
# save the mapping
dump(mapping, open('mapping.pkl', 'wb'))