upd model file

This commit is contained in:
Ubuntu 2025-04-13 10:48:13 +00:00
parent 1b01d7461c
commit 8fbe671229

View File

@ -22,17 +22,36 @@ mistral_api_key = "hXDC4RBJk1qy5pOlrgr01GtOlmyCBaNs"
if not mistral_api_key:
raise ValueError("Mistral API key not found in configuration.")
###############################################################################
# Jednoduché funkcie pre preklad (stub)
# Simple functions for translation (stub)
###############################################################################
def translate_to_slovak(text: str) -> str:
return text
def translate_preserving_medicine_names(text: str) -> str:
return text
###############################################################################
# Funkcia pre vyhodnotenie úplnosti odpovede
# Function for generating detailed evaluation description via Mistral
###############################################################################
def generate_detailed_description(query: str, answer: str, rating: float) -> str:
prompt = (
f"Podrobne opíš, prečo odpoveď: '{answer}' na otázku: '{query}' dosiahla hodnotenie {rating} zo 10. "
"Uveď relevantné aspekty, ktoré ovplyvnili toto hodnotenie, vrátane úplnosti, presnosti a kvality vysvetlenia."
)
try:
description = llm_small.generate_text(prompt=prompt, max_tokens=150, temperature=0.5)
return description.strip()
except Exception as e:
logger.error(f"Error generating detailed description: {e}")
return "Nie je dostupný podrobný popis."
###############################################################################
# Function for evaluating the completeness of the answer
###############################################################################
def evaluate_complete_answer(query: str, answer: str) -> dict:
evaluation_prompt = (
@ -48,12 +67,13 @@ def evaluate_complete_answer(query: str, answer: str) -> dict:
try:
score = float(score_str.strip())
except Exception as e:
logger.error(f"Chyba pri parsovaní skóre: {e}")
logger.error(f"Error parsing evaluation score: {e}")
score = 0.0
return {"rating": round(score, 2), "explanation": "Vyhodnotenie na základe požadovaných kritérií."}
return {"rating": round(score, 2), "explanation": "Evaluation based on required criteria."}
###############################################################################
# Funkcia pre validáciu logiky odpovede
# Function for validating the response logic
###############################################################################
def validate_answer_logic(query: str, answer: str) -> str:
validation_prompt = (
@ -66,14 +86,39 @@ def validate_answer_logic(query: str, answer: str) -> str:
)
try:
validated_answer = llm_small.generate_text(prompt=validation_prompt, max_tokens=800, temperature=0.5)
logger.info(f"Validovaná odpoveď: {validated_answer}")
logger.info(f"Validated answer: {validated_answer}")
return validated_answer
except Exception as e:
logger.error(f"Chyba pri validácii odpovede: {e}")
logger.error(f"Error during answer validation: {e}")
return answer
###############################################################################
# Funkcia pre vytvorenie dynamického promptu s informáciami z dokumentov
# Function for logging the evaluation result to file
###############################################################################
def log_evaluation_to_file(model: str, search_type: str, rating: float, detailed_desc: str, answer: str):
# Nahradenie medzier podčiarkovníkmi pre názov modelu
safe_model = model.replace(" ", "_")
file_name = f"{safe_model}_{search_type}.txt"
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
log_entry = (
f"Timestamp: {timestamp}\n"
f"Rating: {rating}/10\n"
f"Detailed description:\n{detailed_desc}\n"
f"Answer:\n{answer}\n"
+ "=" * 80 + "\n\n"
)
try:
with open(file_name, "a", encoding="utf-8") as f:
f.write(log_entry)
logger.info(f"Hodnotenie bolo zapísané do súboru {file_name}.")
except Exception as e:
logger.error(f"Error writing evaluation to file {file_name}: {e}")
###############################################################################
# Function for creating a dynamic prompt with information from documents
###############################################################################
def build_dynamic_prompt(query: str, documents: list) -> str:
documents_str = "\n".join(documents)
@ -90,8 +135,9 @@ def build_dynamic_prompt(query: str, documents: list) -> str:
)
return prompt
###############################################################################
# Funkcia na získanie používateľských dát z databázy prostredníctvom endpointu /api/get_user_data
# Function to get user data from the database via endpoint /api/get_user_data
###############################################################################
def get_user_data_from_db(chat_id: str) -> str:
try:
@ -100,13 +146,14 @@ def get_user_data_from_db(chat_id: str) -> str:
data = response.json()
return data.get("user_data", "")
else:
logger.warning(f"Nepodarilo sa získať user_data, status: {response.status_code}")
logger.warning(f"Nezískané user_data, status: {response.status_code}")
except Exception as e:
logger.error(f"Chyba pri získavaní user_data z DB: {e}", exc_info=True)
logger.error(f"Error retrieving user_data from DB: {e}", exc_info=True)
return ""
###############################################################################
# Trieda pre volanie Mistral LLM
# Class for calling Mistral LLM
###############################################################################
class CustomMistralLLM:
def __init__(self, api_key: str, endpoint_url: str, model_name: str):
@ -131,54 +178,72 @@ class CustomMistralLLM:
response = requests.post(self.endpoint_url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
logger.info(f"Úplná odpoveď od modelu {self.model_name}: {result}")
logger.info(f"Full response from model {self.model_name}: {result}")
return result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
except HTTPError as e:
if response.status_code == 429:
logger.warning(f"Rate limit prekročený. Čakám {delay} sekúnd pred ďalšou skúškou.")
logger.warning(f"Rate limit exceeded. Waiting {delay} seconds before retry.")
time.sleep(delay)
attempt += 1
else:
logger.error(f"HTTP chyba: {e}")
logger.error(f"HTTP Error: {e}")
raise e
except Exception as ex:
logger.error(f"Chyba: {str(ex)}")
logger.error(f"Error: {str(ex)}")
raise ex
raise Exception("Dosiahnutý maximálny počet pokusov pre API request")
raise Exception("Reached maximum number of retries for API request")
###############################################################################
# Funkcia pre kontrolu, či správa súvisí s témou medicíny a liekov
# Initialisation of Embeddings and Elasticsearch
###############################################################################
def check_if_message_is_relevant(query: str) -> (bool, str):
# Ak je dotaz rovnaký s textami pre doplňujúce informácie, preskočíme kontrolu
missing_msgs = [
"Prosím, uveďte vek pacienta.",
"Má pacient nejaké chronické ochorenia alebo alergie?",
"Ide o liek na predpis alebo voľnopredajný liek?"
]
if query.strip() in missing_msgs:
return True, "Ano"
logger.info("Loading HuggingFaceEmbeddings model...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
prompt_relevance = (
f"Pozri si nasledujúci dotaz užívateľa: '{query}'.\n"
"Patrí tento dotaz logicky do témy medicíny a odporúčaní liekov? "
"Ak áno, odpíš presne slovom 'Ano'. Ak nie, uveď dôvod, prečo sa dotaz netýka našej témy."
index_name = "drug_docs"
if config.get("useCloud", False):
logger.info("Using cloud Elasticsearch.")
cloud_id = "tt:dXMtZWFzdC0yLmF3cy5lbGFzdGljLWNsb3VkLmNvbTo0NDMkOGM3ODQ0ZWVhZTEyNGY3NmFjNjQyNDFhNjI4NmVhYzMkZTI3YjlkNTQ0ODdhNGViNmEyMTcxMjMxNmJhMWI0ZGU="
vectorstore = ElasticsearchStore(
es_cloud_id=cloud_id,
index_name=index_name,
embedding=embeddings,
es_user="elastic",
es_password="sSz2BEGv56JRNjGFwoQ191RJ"
)
response = llm_small.generate_text(prompt=prompt_relevance, max_tokens=200, temperature=0.3)
response = response.strip()
if response.lower() == "ano":
return True, "Ano"
else:
return False, response
else:
logger.info("Using local Elasticsearch.")
vectorstore = ElasticsearchStore(
es_url="http://elasticsearch:9200",
index_name=index_name,
embedding=embeddings,
)
logger.info("Connected to Elasticsearch.")
###############################################################################
# Funkcia pre klasifikáciu dopytu: vyhľadávanie vs. upresnenie
# Initialisation of LLM small & large
###############################################################################
llm_small = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-small-latest"
)
llm_large = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-large-latest"
)
###############################################################################
# Request classification function: vyhladavanie vs. upresnenie
###############################################################################
def classify_query(query: str, chat_history: str = "") -> str:
if not chat_history.strip():
return "vyhladavanie"
prompt = (
"Si zdravotnícky expert, ktorý analyzuje otázky používateľov. "
"Ty si zdravotnícky expert, ktorý analyzuje otázky používateľov. "
"Analyzuj nasledujúci dopyt a urči, či ide o dopyt na vyhľadanie liekov alebo "
"o upresnenie/doplnenie už poskytnutej odpovede.\n"
"Ak dopyt obsahuje výrazy ako 'čo pit', 'aké lieky', 'odporuč liek', 'hľadám liek', "
@ -196,15 +261,16 @@ def classify_query(query: str, chat_history: str = "") -> str:
return "upresnenie"
return "vyhladavanie"
###############################################################################
# Šablóna pre upresnenie dopytu
# Template for upresnenie dopytu
###############################################################################
def build_upresnenie_prompt_no_history(chat_history: str, user_query: str) -> str:
prompt = f"""
Si zdravotnícky expert. Máš k dispozícii históriu chatu a novú upresňujúcu otázku.
Ty si zdravotnícky expert. Máš k dispozícii históriu chatu a novú upresňujúcu otázku.
Ak v histórii chatu existuje jasná odpoveď na túto upresňujúcu otázku, napíš:
"FOUND_IN_HISTORY: <ľudský vysvetľujúci text>"
"FOUND_IN_HISTORY: <ľudský vysvetľajúci text>"
Ak však v histórii chatu nie je dostatok informácií, napíš:
"NO_ANSWER_IN_HISTORY: <krátky vyhľadávací dotaz do Elasticsearch>"
@ -220,8 +286,9 @@ Upresňujúca otázka od používateľa:
"""
return prompt
###############################################################################
# Funkcia pre získanie posledného vyhľadávacieho dopytu z histórie
# Function for retrieving the last vyhladavacieho dopytu z histórie
###############################################################################
def extract_last_vyhladavacie_query(chat_history: str) -> str:
lines = chat_history.splitlines()
@ -232,8 +299,9 @@ def extract_last_vyhladavacie_query(chat_history: str) -> str:
break
return last_query
###############################################################################
# Trieda pre agenta konverzácie (dátové ukladanie: vek, anamnéza, predpis, user_data, search_query)
# Agent class for data storage: vek, anamneza, predpis, user_data, search_query
###############################################################################
class ConversationalAgent:
def __init__(self):
@ -291,13 +359,15 @@ class ConversationalAgent:
def ask_follow_up(self, missing_info: dict) -> str:
return " ".join(missing_info.values())
###############################################################################
# Hlavná funkcia process_query_with_mistral s aktualizovanou logikou
# Main function process_query_with_mistral with updated logic and logging
###############################################################################
CHAT_HISTORY_ENDPOINT = "http://localhost:5000/api/chat_history_detail"
def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10):
logger.info("Spustenie spracovania dopytu.")
logger.info("Processing query started.")
chat_history = ""
if chat_context:
@ -319,17 +389,6 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
except Exception as e:
logger.error(f"Chyba pri načítaní histórie: {e}")
# Kontrola relevancie správy
is_relevant, relevance_response = check_if_message_is_relevant(query)
if not is_relevant:
logger.info("Dotaz sa netýka témy medicíny, vraciam vysvetlenie.")
return {
"best_answer": relevance_response,
"model": "RelevanceCheck",
"rating": 0,
"explanation": "Dotaz sa netýka témy medicíny a odporúčaní liekov."
}
agent = ConversationalAgent()
if chat_history:
agent.load_memory_from_history(chat_history)
@ -348,11 +407,12 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
try:
update_response = requests.post("http://localhost:5000/api/save_user_data", json=update_payload)
if update_response.status_code == 200:
logger.info("Používateľské dáta boli úspešne aktualizované cez endpoint /api/save_user_data (data question flag).")
logger.info(
"User data was successfully updated via endpoint /api/save_user_data (data question flag).")
else:
logger.warning(f"Neúspešná aktualizácia dát (data question flag): {update_response.text}")
logger.warning(f"Failed to update data (data question flag): {update_response.text}")
except Exception as e:
logger.error(f"Chyba pri aktualizácii user_data cez endpoint (data question flag): {e}")
logger.error(f"Error when updating user_data via endpoint (data question flag): {e}")
if missing_info:
logger.info(f"Chýbajúce informácie: {missing_info}")
@ -363,30 +423,34 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
try:
update_response = requests.post("http://localhost:5000/api/save_user_data", json=update_payload)
if update_response.status_code == 200:
logger.info("Používateľské dáta boli úspešne aktualizované cez endpoint /api/save_user_data.")
logger.info("User data was successfully updated via endpoint /api/save_user_data.")
else:
logger.warning(f"Neúspešná aktualizácia dát: {update_response.text}")
logger.warning(f"Failed to update the data: {update_response.text}")
except Exception as e:
logger.error(f"Chyba pri aktualizácii user_data cez endpoint: {e}")
logger.error(f"Error when updating user_data via endpoint: {e}")
return {
"best_answer": combined_missing_text,
"model": "FollowUp (new chat)",
"rating": 0,
"explanation": "Pre pokračovanie je potrebné doplniť ďalšie údaje.",
"explanation": "Additional data pre pokračovanie is required.",
"patient_data": query
}
qtype = classify_query(query, chat_history)
logger.info(f"Typ dopytu: {qtype}")
logger.info(f"Časť histórie chatu: {chat_history[:200]}...")
logger.info(f"Chat context (snippet): {chat_history[:200]}...")
# Určenie typu vyhľadávania: "vector" pre upresnenie, inak "text"
search_type = "vector" if qtype == "upresnenie" else "text"
if qtype == "vyhladavanie":
user_data_db = get_user_data_from_db(chat_id)
if user_data_db:
query = query + " Údaje človeka: " + user_data_db
query = query + " Udaje cloveka: " + user_data_db
agent.long_term_memory["search_query"] = query
if qtype == "upresnenie":
# Kombinácia pôvodného vyhľadávacieho dopytu a upresňujúcej otázky
original_search = agent.long_term_memory.get("search_query")
if not original_search:
original_search = extract_last_vyhladavacie_query(chat_history)
@ -395,21 +459,21 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
combined_query = (original_search + " " + query).strip()
user_data_db = get_user_data_from_db(chat_id)
if user_data_db:
combined_query += " Údaje človeka: " + user_data_db
logger.info(f"Kombinovaný dopyt pre vyhľadávanie: {combined_query}")
combined_query += " Udaje cloveka: " + user_data_db
logger.info(f"Combined query for search: {combined_query}")
upres_prompt = build_upresnenie_prompt_no_history(chat_history, combined_query)
response_str = llm_small.generate_text(upres_prompt, max_tokens=1200, temperature=0.5)
normalized = response_str.strip()
logger.info(f"Odpoveď na prompt pre upresnenie: {normalized}")
logger.info(f"Upresnenie prompt response: {normalized}")
if re.match(r"(?i)^found_in_history:\s*", normalized):
logger.info("Nájdené FOUND_IN_HISTORY vykonávam vyhľadávanie s kombinovaným dopytom.")
logger.info("Zistený FOUND_IN_HISTORY vykonávame vyhľadávanie s kombinovaným dopytom.")
elif re.match(r"(?i)^no_answer_in_history:\s*", normalized):
parts = re.split(r"(?i)^no_answer_in_history:\s*", normalized, maxsplit=1)
if len(parts) >= 2:
combined_query = parts[1].strip()
logger.info(f"Upravený vyhľadávací dopyt z NO_ANSWER_IN_HISTORY: {combined_query}")
logger.info(f"Upravený vyhľadávací dopyт z NO_ANSWER_IN_HISTORY: {combined_query}")
vector_results = vectorstore.similarity_search(combined_query, k=k)
max_docs = 5
@ -420,7 +484,7 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"best_answer": "Ľutujem, nenašli sa žiadne relevantné informácie.",
"model": "Upresnenie-NoResults",
"rating": 0,
"explanation": "Žiadne výsledky z vyhľadávania."
"explanation": "No results from search."
}
joined_docs = "\n".join(vector_docs)
final_prompt = (
@ -430,6 +494,7 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"Vygeneruj odporúčanie liekov alebo vysvetlenie, ak je to relevantné.\n"
"Prosím, odpovedaj stručne a dostatočne, bez nadmernej dĺžky."
)
# Volanie oboch modelov pre upresnenie (vectorový dopyt)
ans_small = llm_small.generate_text(final_prompt, max_tokens=1200, temperature=0.7)
ans_large = llm_large.generate_text(final_prompt, max_tokens=1200, temperature=0.7)
val_small = validate_answer_logic(combined_query, ans_small)
@ -437,27 +502,25 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
eval_small = evaluate_complete_answer(combined_query, val_small)
eval_large = evaluate_complete_answer(combined_query, val_large)
candidates = [
{"summary": val_small, "eval": eval_small, "model": "Mistral Small"},
{"summary": val_large, "eval": eval_large, "model": "Mistral Large"},
{"model": "Mistral Small", "summary": val_small, "eval": eval_small},
{"model": "Mistral Large", "summary": val_large, "eval": eval_large},
]
# Pre každého kandidáta vygenerujeme detailný popis a zapíšeme výsledok do príslušného súboru
for candidate in candidates:
detailed_desc = generate_detailed_description(combined_query, candidate["summary"],
candidate["eval"]["rating"])
log_evaluation_to_file(candidate["model"], "vector", candidate["eval"]["rating"], detailed_desc,
candidate["summary"])
best = max(candidates, key=lambda x: x["eval"]["rating"])
logger.info(f"Odpoveď od modelu {best['model']} má rating: {best['eval']['rating']}/10")
evaluation_table = "=== Výsledky hodnotenia odpovedí ===\n"
evaluation_table += "{:<15} | {:<6} | {:<60}\n".format("Model", "Rating", "Evaluovaný text")
evaluation_table += "-" * 100 + "\n"
for candidate in candidates:
model_name = candidate["model"]
rating = candidate["eval"]["rating"]
evaluated_text = candidate["summary"].replace("\n", " ")
evaluation_table += "{:<15} | {:<6} | {:<60}\n".format(model_name, rating, evaluated_text)
evaluation_table += "=" * 100 + "\n"
final_answer = translate_preserving_medicine_names(best["summary"])
memory_json = json.dumps(agent.long_term_memory)
memory_block = f"[MEMORY]{memory_json}[/MEMORY]"
final_answer_with_memory = final_answer + "\n\n"
return {
"best_answer": final_answer_with_memory,
"model": best["model"],
@ -465,6 +528,7 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"explanation": best["eval"]["explanation"]
}
# Vetva pre vyhľadávanie typu "vyhladavanie" (textový dopyt)
vector_results = vectorstore.similarity_search(query, k=k)
max_docs = 5
max_len = 1000
@ -474,7 +538,7 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"best_answer": "Ľutujem, nenašli sa žiadne relevantné informácie.",
"model": "Vyhladavanie-NoDocs",
"rating": 0,
"explanation": "Žiadne výsledky"
"explanation": "No results"
}
joined_docs = "\n".join(vector_docs)
final_prompt = (
@ -484,54 +548,34 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"Vygeneruj odporúčanie liekov alebo vysvetlenie, ak je to relevantné.\n"
"Prosím, odpovedaj stručne a dostatočne, bez nadmernej dĺžky."
)
answer = llm_small.generate_text(final_prompt, max_tokens=1200, temperature=0.7)
# Volanie oboch modelov pre textový dopyt
ans_small = llm_small.generate_text(final_prompt, max_tokens=1200, temperature=0.7)
ans_large = llm_large.generate_text(final_prompt, max_tokens=1200, temperature=0.7)
val_small = validate_answer_logic(query, ans_small)
val_large = validate_answer_logic(query, ans_large)
eval_small = evaluate_complete_answer(query, val_small)
eval_large = evaluate_complete_answer(query, val_large)
candidates = [
{"model": "Mistral Small", "summary": val_small, "eval": eval_small},
{"model": "Mistral Large", "summary": val_large, "eval": eval_large},
]
# Logovanie výsledkov do súborov pre textový dopyt
for candidate in candidates:
detailed_desc = generate_detailed_description(query, candidate["summary"], candidate["eval"]["rating"])
log_evaluation_to_file(candidate["model"], "text", candidate["eval"]["rating"], detailed_desc,
candidate["summary"])
best = max(candidates, key=lambda x: x["eval"]["rating"])
logger.info(f"Odpoveď od modelu {best['model']} má rating: {best['eval']['rating']}/10")
final_answer = translate_preserving_medicine_names(best["summary"])
memory_json = json.dumps(agent.long_term_memory)
memory_block = f"[MEMORY]{memory_json}[/MEMORY]"
answer_with_memory = answer + "\n\n"
final_answer_with_memory = final_answer + "\n\n"
return {
"best_answer": answer_with_memory,
"model": "Vyhladavanie-Final",
"rating": 9,
"explanation": "Vyhľadávacia cesta"
"best_answer": final_answer_with_memory,
"model": best["model"],
"rating": best["eval"]["rating"],
"explanation": best["eval"]["explanation"]
}
###############################################################################
# Inicializácia Embeddings a Elasticsearch
###############################################################################
logger.info("Načítavam model HuggingFaceEmbeddings...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
index_name = "drug_docs"
if config.get("useCloud", False):
logger.info("Používam cloud Elasticsearch.")
cloud_id = "tt:dXMtZWFzdC0yLmF3cy5lbGFzdGljLWNsb3VkLmNvbTo0NDMkOGM3ODQ0ZWVhZTEyNGY3NmFjNjQyNDFhNjI4NmVhYzMkZTI3YjlkNTQ0ODdhNGViNmEyMTcxMjMxNmJhMWI0ZGU="
vectorstore = ElasticsearchStore(
es_cloud_id=cloud_id,
index_name=index_name,
embedding=embeddings,
es_user="elastic",
es_password="sSz2BEGv56JRNjGFwoQ191RJ"
)
else:
logger.info("Používam lokálny Elasticsearch.")
vectorstore = ElasticsearchStore(
es_url="http://elasticsearch:9200",
index_name=index_name,
embedding=embeddings,
)
logger.info("Pripojenie k Elasticsearch bolo úspešné.")
###############################################################################
# Inicializácia LLM small a large
###############################################################################
llm_small = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-small-latest"
)
llm_large = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-large-latest"
)