add deploy scripts

This commit is contained in:
oleh 2025-04-13 00:40:37 +02:00
parent 1c36f25177
commit 1b01d7461c
7 changed files with 256 additions and 119 deletions

View File

@ -22,20 +22,17 @@ mistral_api_key = "hXDC4RBJk1qy5pOlrgr01GtOlmyCBaNs"
if not mistral_api_key:
raise ValueError("Mistral API key not found in configuration.")
###############################################################################
# Simple functions for translation (stub)
# Jednoduché funkcie pre preklad (stub)
###############################################################################
def translate_to_slovak(text: str) -> str:
return text
def translate_preserving_medicine_names(text: str) -> str:
return text
###############################################################################
# Function for evaluating the completeness of the answer
# Funkcia pre vyhodnotenie úplnosti odpovede
###############################################################################
def evaluate_complete_answer(query: str, answer: str) -> dict:
evaluation_prompt = (
@ -51,13 +48,12 @@ def evaluate_complete_answer(query: str, answer: str) -> dict:
try:
score = float(score_str.strip())
except Exception as e:
logger.error(f"Error parsing evaluation score: {e}")
logger.error(f"Chyba pri parsovaní skóre: {e}")
score = 0.0
return {"rating": round(score, 2), "explanation": "Evaluation based on required criteria."}
return {"rating": round(score, 2), "explanation": "Vyhodnotenie na základe požadovaných kritérií."}
###############################################################################
# Function for validating the response logic
# Funkcia pre validáciu logiky odpovede
###############################################################################
def validate_answer_logic(query: str, answer: str) -> str:
validation_prompt = (
@ -70,15 +66,14 @@ def validate_answer_logic(query: str, answer: str) -> str:
)
try:
validated_answer = llm_small.generate_text(prompt=validation_prompt, max_tokens=800, temperature=0.5)
logger.info(f"Validated answer: {validated_answer}")
logger.info(f"Validovaná odpoveď: {validated_answer}")
return validated_answer
except Exception as e:
logger.error(f"Error during answer validation: {e}")
logger.error(f"Chyba pri validácii odpovede: {e}")
return answer
###############################################################################
# Function for creating a dynamic prompt with information from documents
# Funkcia pre vytvorenie dynamického promptu s informáciami z dokumentov
###############################################################################
def build_dynamic_prompt(query: str, documents: list) -> str:
documents_str = "\n".join(documents)
@ -95,9 +90,8 @@ def build_dynamic_prompt(query: str, documents: list) -> str:
)
return prompt
###############################################################################
# Function to get user data from the database via endpoint /api/get_user_data
# Funkcia na získanie používateľských dát z databázy prostredníctvom endpointu /api/get_user_data
###############################################################################
def get_user_data_from_db(chat_id: str) -> str:
try:
@ -106,14 +100,13 @@ def get_user_data_from_db(chat_id: str) -> str:
data = response.json()
return data.get("user_data", "")
else:
logger.warning(f"Nezískané user_data, status: {response.status_code}")
logger.warning(f"Nepodarilo sa získať user_data, status: {response.status_code}")
except Exception as e:
logger.error(f"Error retrieving user_data from DB: {e}", exc_info=True)
logger.error(f"Chyba pri získavaní user_data z DB: {e}", exc_info=True)
return ""
###############################################################################
# Class for calling Mistral LLM
# Trieda pre volanie Mistral LLM
###############################################################################
class CustomMistralLLM:
def __init__(self, api_key: str, endpoint_url: str, model_name: str):
@ -138,86 +131,54 @@ class CustomMistralLLM:
response = requests.post(self.endpoint_url, headers=headers, json=payload)
response.raise_for_status()
result = response.json()
logger.info(f"Full response from model {self.model_name}: {result}")
logger.info(f"Úplná odpoveď od modelu {self.model_name}: {result}")
return result.get("choices", [{}])[0].get("message", {}).get("content", "No response")
except HTTPError as e:
if response.status_code == 429:
logger.warning(f"Rate limit exceeded. Waiting {delay} seconds before retry.")
logger.warning(f"Rate limit prekročený. Čakám {delay} sekúnd pred ďalšou skúškou.")
time.sleep(delay)
attempt += 1
else:
logger.error(f"HTTP Error: {e}")
logger.error(f"HTTP chyba: {e}")
raise e
except Exception as ex:
logger.error(f"Error: {str(ex)}")
logger.error(f"Chyba: {str(ex)}")
raise ex
raise Exception("Reached maximum number of retries for API request")
raise Exception("Dosiahnutý maximálny počet pokusov pre API request")
###############################################################################
# Function for generating a detailed evaluation description
# Funkcia pre kontrolu, či správa súvisí s témou medicíny a liekov
###############################################################################
# def detailed_evaluation_description(query: str, answer: str, rating: float) -> str:
# prompt = (
# f"Podrobne opíš, prečo odpoveď: '{answer}' na otázku: '{query}' dosiahla hodnotenie {rating} zo 10. "
# "Uveď relevantné aspekty, ktoré ovplyvnili toto hodnotenie, vrátane úplnosti, presnosti a kvality vysvetlenia."
# )
# description = llm_small.generate_text(prompt=prompt, max_tokens=150, temperature=0.5)
# return description.strip()
#
# Ak chcete vidieť podrobné hodnotenie, odkomentujte funkciu detailed_evaluation_description a príslušné časti kódu.
def check_if_message_is_relevant(query: str) -> (bool, str):
# Ak je dotaz rovnaký s textami pre doplňujúce informácie, preskočíme kontrolu
missing_msgs = [
"Prosím, uveďte vek pacienta.",
"Má pacient nejaké chronické ochorenia alebo alergie?",
"Ide o liek na predpis alebo voľnopredajný liek?"
]
if query.strip() in missing_msgs:
return True, "Ano"
###############################################################################
# Initialisation of Embeddings and Elasticsearch
###############################################################################
logger.info("Loading HuggingFaceEmbeddings model...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
index_name = "drug_docs"
if config.get("useCloud", False):
logger.info("Using cloud Elasticsearch.")
cloud_id = "tt:dXMtZWFzdC0yLmF3cy5lbGFzdGljLWNsb3VkLmNvbTo0NDMkOGM3ODQ0ZWVhZTEyNGY3NmFjNjQyNDFhNjI4NmVhYzMkZTI3YjlkNTQ0ODdhNGViNmEyMTcxMjMxNmJhMWI0ZGU="
vectorstore = ElasticsearchStore(
es_cloud_id=cloud_id,
index_name=index_name,
embedding=embeddings,
es_user="elastic",
es_password="sSz2BEGv56JRNjGFwoQ191RJ"
prompt_relevance = (
f"Pozri si nasledujúci dotaz užívateľa: '{query}'.\n"
"Patrí tento dotaz logicky do témy medicíny a odporúčaní liekov? "
"Ak áno, odpíš presne slovom 'Ano'. Ak nie, uveď dôvod, prečo sa dotaz netýka našej témy."
)
else:
logger.info("Using local Elasticsearch.")
vectorstore = ElasticsearchStore(
es_url="http://elasticsearch:9200",
index_name=index_name,
embedding=embeddings,
)
logger.info("Connected to Elasticsearch.")
response = llm_small.generate_text(prompt=prompt_relevance, max_tokens=200, temperature=0.3)
response = response.strip()
if response.lower() == "ano":
return True, "Ano"
else:
return False, response
###############################################################################
# Initialisation of LLM small & large
###############################################################################
llm_small = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-small-latest"
)
llm_large = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-large-latest"
)
###############################################################################
# Request classification function: vyhladavanie vs. upresnenie
# Funkcia pre klasifikáciu dopytu: vyhľadávanie vs. upresnenie
###############################################################################
def classify_query(query: str, chat_history: str = "") -> str:
if not chat_history.strip():
return "vyhladavanie"
prompt = (
"Ty si zdravotnícky expert, ktorý analyzuje otázky používateľov. "
"Si zdravotnícky expert, ktorý analyzuje otázky používateľov. "
"Analyzuj nasledujúci dopyt a urči, či ide o dopyt na vyhľadanie liekov alebo "
"o upresnenie/doplnenie už poskytnutej odpovede.\n"
"Ak dopyt obsahuje výrazy ako 'čo pit', 'aké lieky', 'odporuč liek', 'hľadám liek', "
@ -235,16 +196,15 @@ def classify_query(query: str, chat_history: str = "") -> str:
return "upresnenie"
return "vyhladavanie"
###############################################################################
# Template for upresnenie dopytu
# Šablóna pre upresnenie dopytu
###############################################################################
def build_upresnenie_prompt_no_history(chat_history: str, user_query: str) -> str:
prompt = f"""
Ty si zdravotnícky expert. Máš k dispozícii históriu chatu a novú upresňujúcu otázku.
Si zdravotnícky expert. Máš k dispozícii históriu chatu a novú upresňujúcu otázku.
Ak v histórii chatu existuje jasná odpoveď na túto upresňujúcu otázku, napíš:
"FOUND_IN_HISTORY: <ľudský vysvetľajúci text>"
"FOUND_IN_HISTORY: <ľudský vysvetľujúci text>"
Ak však v histórii chatu nie je dostatok informácií, napíš:
"NO_ANSWER_IN_HISTORY: <krátky vyhľadávací dotaz do Elasticsearch>"
@ -260,9 +220,8 @@ Upresňujúca otázka od používateľa:
"""
return prompt
###############################################################################
# Function for retrieving the last vyhladavacieho dopytu z histórie
# Funkcia pre získanie posledného vyhľadávacieho dopytu z histórie
###############################################################################
def extract_last_vyhladavacie_query(chat_history: str) -> str:
lines = chat_history.splitlines()
@ -273,9 +232,8 @@ def extract_last_vyhladavacie_query(chat_history: str) -> str:
break
return last_query
###############################################################################
# Agent class for data storage: vek, anamneza, predpis, user_data, search_query
# Trieda pre agenta konverzácie (dátové ukladanie: vek, anamnéza, predpis, user_data, search_query)
###############################################################################
class ConversationalAgent:
def __init__(self):
@ -333,15 +291,13 @@ class ConversationalAgent:
def ask_follow_up(self, missing_info: dict) -> str:
return " ".join(missing_info.values())
###############################################################################
# Main function process_query_with_mistral with updated logic
# Hlavná funkcia process_query_with_mistral s aktualizovanou logikou
###############################################################################
CHAT_HISTORY_ENDPOINT = "http://localhost:5000/api/chat_history_detail"
def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10):
logger.info("Processing query started.")
logger.info("Spustenie spracovania dopytu.")
chat_history = ""
if chat_context:
@ -363,6 +319,17 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
except Exception as e:
logger.error(f"Chyba pri načítaní histórie: {e}")
# Kontrola relevancie správy
is_relevant, relevance_response = check_if_message_is_relevant(query)
if not is_relevant:
logger.info("Dotaz sa netýka témy medicíny, vraciam vysvetlenie.")
return {
"best_answer": relevance_response,
"model": "RelevanceCheck",
"rating": 0,
"explanation": "Dotaz sa netýka témy medicíny a odporúčaní liekov."
}
agent = ConversationalAgent()
if chat_history:
agent.load_memory_from_history(chat_history)
@ -381,11 +348,11 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
try:
update_response = requests.post("http://localhost:5000/api/save_user_data", json=update_payload)
if update_response.status_code == 200:
logger.info("User data was successfully updated via endpoint /api/save_user_data (data question flag).")
logger.info("Používateľské dáta boli úspešne aktualizované cez endpoint /api/save_user_data (data question flag).")
else:
logger.warning(f"Failed to update data (data question flag): {update_response.text}")
logger.warning(f"Neúspešná aktualizácia dát (data question flag): {update_response.text}")
except Exception as e:
logger.error(f"Error when updating user_data via endpoint (data question flag): {e}")
logger.error(f"Chyba pri aktualizácii user_data cez endpoint (data question flag): {e}")
if missing_info:
logger.info(f"Chýbajúce informácie: {missing_info}")
@ -396,27 +363,27 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
try:
update_response = requests.post("http://localhost:5000/api/save_user_data", json=update_payload)
if update_response.status_code == 200:
logger.info("User data was successfully updated via endpoint /api/save_user_data.")
logger.info("Používateľské dáta boli úspešne aktualizované cez endpoint /api/save_user_data.")
else:
logger.warning(f"Failed to update the data: {update_response.text}")
logger.warning(f"Neúspešná aktualizácia dát: {update_response.text}")
except Exception as e:
logger.error(f"Error when updating user_data via endpoint: {e}")
logger.error(f"Chyba pri aktualizácii user_data cez endpoint: {e}")
return {
"best_answer": combined_missing_text,
"model": "FollowUp (new chat)",
"rating": 0,
"explanation": "Additional data pre pokračovanie is required.",
"explanation": "Pre pokračovanie je potrebné doplniť ďalšie údaje.",
"patient_data": query
}
qtype = classify_query(query, chat_history)
logger.info(f"Typ dopytu: {qtype}")
logger.info(f"Chat context (snippet): {chat_history[:200]}...")
logger.info(f"Časť histórie chatu: {chat_history[:200]}...")
if qtype == "vyhladavanie":
user_data_db = get_user_data_from_db(chat_id)
if user_data_db:
query = query + " Udaje cloveka: " + user_data_db
query = query + " Údaje človeka: " + user_data_db
agent.long_term_memory["search_query"] = query
if qtype == "upresnenie":
@ -428,21 +395,21 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
combined_query = (original_search + " " + query).strip()
user_data_db = get_user_data_from_db(chat_id)
if user_data_db:
combined_query += " Udaje cloveka: " + user_data_db
logger.info(f"Combined query for search: {combined_query}")
combined_query += " Údaje človeka: " + user_data_db
logger.info(f"Kombinovaný dopyt pre vyhľadávanie: {combined_query}")
upres_prompt = build_upresnenie_prompt_no_history(chat_history, combined_query)
response_str = llm_small.generate_text(upres_prompt, max_tokens=1200, temperature=0.5)
normalized = response_str.strip()
logger.info(f"Upresnenie prompt response: {normalized}")
logger.info(f"Odpoveď na prompt pre upresnenie: {normalized}")
if re.match(r"(?i)^found_in_history:\s*", normalized):
logger.info("Zistený FOUND_IN_HISTORY vykonávame vyhľadávanie s kombinovaným dopytom.")
logger.info("Nájdené FOUND_IN_HISTORY vykonávam vyhľadávanie s kombinovaným dopytom.")
elif re.match(r"(?i)^no_answer_in_history:\s*", normalized):
parts = re.split(r"(?i)^no_answer_in_history:\s*", normalized, maxsplit=1)
if len(parts) >= 2:
combined_query = parts[1].strip()
logger.info(f"Upravený vyhľadávací dopyт z NO_ANSWER_IN_HISTORY: {combined_query}")
logger.info(f"Upravený vyhľadávací dopyt z NO_ANSWER_IN_HISTORY: {combined_query}")
vector_results = vectorstore.similarity_search(combined_query, k=k)
max_docs = 5
@ -453,7 +420,7 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"best_answer": "Ľutujem, nenašli sa žiadne relevantné informácie.",
"model": "Upresnenie-NoResults",
"rating": 0,
"explanation": "No results from search."
"explanation": "Žiadne výsledky z vyhľadávania."
}
joined_docs = "\n".join(vector_docs)
final_prompt = (
@ -474,19 +441,11 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
{"summary": val_large, "eval": eval_large, "model": "Mistral Large"},
]
#
# for candidate in candidates:
# detailed_desc = detailed_evaluation_description(combined_query, candidate["summary"], candidate["eval"]["rating"])
# candidate["eval"]["detailed_description"] = detailed_desc
#
best = max(candidates, key=lambda x: x["eval"]["rating"])
logger.info(f"Odpoveď od modelu {best['model']} má rating: {best['eval']['rating']}/10")
evaluation_table = "=== Výsledky hodnotenia odpovedí ===\n"
evaluation_table += "{:<15} | {:<6} | {:<60}\n".format("Model", "Rating", "Evaluated Text")
evaluation_table += "{:<15} | {:<6} | {:<60}\n".format("Model", "Rating", "Evaluovaný text")
evaluation_table += "-" * 100 + "\n"
for candidate in candidates:
model_name = candidate["model"]
@ -495,10 +454,6 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
evaluation_table += "{:<15} | {:<6} | {:<60}\n".format(model_name, rating, evaluated_text)
evaluation_table += "=" * 100 + "\n"
# with open("evaluation.txt", "w", encoding="utf-8") as f:
# f.write(evaluation_table)
# logger.info("Evaluation table записана в evaluation.txt")
final_answer = translate_preserving_medicine_names(best["summary"])
memory_json = json.dumps(agent.long_term_memory)
memory_block = f"[MEMORY]{memory_json}[/MEMORY]"
@ -519,7 +474,7 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"best_answer": "Ľutujem, nenašli sa žiadne relevantné informácie.",
"model": "Vyhladavanie-NoDocs",
"rating": 0,
"explanation": "No results"
"explanation": "Žiadne výsledky"
}
joined_docs = "\n".join(vector_docs)
final_prompt = (
@ -539,3 +494,44 @@ def process_query_with_mistral(query: str, chat_id: str, chat_context: str, k=10
"rating": 9,
"explanation": "Vyhľadávacia cesta"
}
###############################################################################
# Inicializácia Embeddings a Elasticsearch
###############################################################################
logger.info("Načítavam model HuggingFaceEmbeddings...")
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
index_name = "drug_docs"
if config.get("useCloud", False):
logger.info("Používam cloud Elasticsearch.")
cloud_id = "tt:dXMtZWFzdC0yLmF3cy5lbGFzdGljLWNsb3VkLmNvbTo0NDMkOGM3ODQ0ZWVhZTEyNGY3NmFjNjQyNDFhNjI4NmVhYzMkZTI3YjlkNTQ0ODdhNGViNmEyMTcxMjMxNmJhMWI0ZGU="
vectorstore = ElasticsearchStore(
es_cloud_id=cloud_id,
index_name=index_name,
embedding=embeddings,
es_user="elastic",
es_password="sSz2BEGv56JRNjGFwoQ191RJ"
)
else:
logger.info("Používam lokálny Elasticsearch.")
vectorstore = ElasticsearchStore(
es_url="http://elasticsearch:9200",
index_name=index_name,
embedding=embeddings,
)
logger.info("Pripojenie k Elasticsearch bolo úspešné.")
###############################################################################
# Inicializácia LLM small a large
###############################################################################
llm_small = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-small-latest"
)
llm_large = CustomMistralLLM(
api_key=mistral_api_key,
endpoint_url="https://api.mistral.ai/v1/chat/completions",
model_name="mistral-large-latest"
)

10
sk1/connect.sh Normal file
View File

@ -0,0 +1,10 @@
#!/bin/bash
IP="52.51.10.99"
KEY_PATH="/c/Users/olezk/Desktop/mykey.pem"
ssh-keygen -R $IP > /dev/null
ssh -i "$KEY_PATH" ubuntu@$IP

43
sk1/deploy-instance.sh Normal file
View File

@ -0,0 +1,43 @@
#!/bin/bash
# ========== Конфигурация ==========
AMI_ID="ami-01c7096235204c7be"
INSTANCE_TYPE="t3.xlarge"
KEY_NAME="mykey"
SECURITY_GROUP="sg-0e08dfcd575ebfe2e"
EIP_ALLOC_ID="eipalloc-0ab8a278c183034a3"
SUBNET_ID="subnet-015876fa51f73f1ad"
LOCAL_PEM_PATH="/c/Users/olezk/Desktop/mykey.pem"
USERNAME="ubuntu"
SSH_OUTPUT_FILE="ssh-key.txt"
# ========== Запуск EC2-инстанса ==========
echo "🚀 Запускаем EC2 инстанс..."
INSTANCE_ID=$(aws ec2 run-instances \
--image-id $AMI_ID \
--instance-type $INSTANCE_TYPE \
--key-name $KEY_NAME \
--security-group-ids $SECURITY_GROUP \
--subnet-id $SUBNET_ID \
--associate-public-ip-address \
--query "Instances[0].InstanceId" \
--output text)
echo "🟡 Инстанс создаётся: $INSTANCE_ID"
aws ec2 wait instance-running --instance-ids $INSTANCE_ID
echo "✅ Инстанс $INSTANCE_ID работает."
# ========== Получение публичного IP ==========
PUBLIC_IP=$(aws ec2 describe-instances \
--instance-ids "$INSTANCE_ID" \
--query "Reservations[0].Instances[0].PublicIpAddress" \
--output text)
# ========== Привязка Elastic IP ==========
echo "🔗 Привязываем Elastic IP..."
aws ec2 associate-address \
--instance-id $INSTANCE_ID \
--allocation-id $EIP_ALLOC_ID
echo "✅ Готово!"
echo "🔗 IP для подключения: $PUBLIC_IP"

24
sk1/setup-docker.sh Normal file
View File

@ -0,0 +1,24 @@
#!/bin/bash
echo "🔧 Обновляем пакеты..."
sudo apt-get update
echo "🐳 Устанавливаем Docker..."
sudo apt-get install -y docker.io
echo "📦 Устанавливаем Docker Compose..."
sudo apt-get install -y docker-compose
echo "🔁 Разрешаем запуск Docker без sudo..."
sudo usermod -aG docker $USER
newgrp docker
echo "🔧 Включаем автозапуск Docker..."
sudo systemctl enable docker
sudo systemctl start docker
echo "🧬 Устанавливаем Git..."
sudo apt-get install -y git
echo "✅ Готово! Система готова к запуску:"
echo "👉 docker-compose up --build"

19
sk1/start-instance.sh Normal file
View File

@ -0,0 +1,19 @@
#!/bin/bash
INSTANCE_ID=$(aws ec2 describe-instances \
--filters "Name=instance-state-name,Values=stopped" \
--query "Reservations[-1].Instances[-1].InstanceId" \
--output text)
if [ "$INSTANCE_ID" == "None" ] || [ -z "$INSTANCE_ID" ]; then
echo "❌ Нет остановленных инстансов для запуска."
exit 1
fi
echo "🚀 Запускаем инстанс $INSTANCE_ID..."
aws ec2 start-instances --instance-ids "$INSTANCE_ID"
echo "⏳ Ждём запуска..."
aws ec2 wait instance-running --instance-ids "$INSTANCE_ID"
echo "✅ Инстанс $INSTANCE_ID работает."

19
sk1/stop-instance.sh Normal file
View File

@ -0,0 +1,19 @@
#!/bin/bash
INSTANCE_ID=$(aws ec2 describe-instances \
--filters "Name=instance-state-name,Values=running" \
--query "Reservations[-1].Instances[-1].InstanceId" \
--output text)
if [ "$INSTANCE_ID" == "None" ] || [ -z "$INSTANCE_ID" ]; then
echo "❌ Нет работающих инстансов для остановки."
exit 1
fi
echo "🛑 Останавливаем инстанс $INSTANCE_ID..."
aws ec2 stop-instances --instance-ids "$INSTANCE_ID"
echo "⏳ Ждём остановки..."
aws ec2 wait instance-stopped --instance-ids "$INSTANCE_ID"
echo "✅ Инстанс $INSTANCE_ID остановлен."

26
sk1/terminate.sh Normal file
View File

@ -0,0 +1,26 @@
#!/bin/bash
# Найдём только running-инстансы
INSTANCE_ID=$(aws ec2 describe-instances \
--filters "Name=instance-state-name,Values=running" \
--query "Reservations[-1].Instances[-1].InstanceId" \
--output text)
if [ "$INSTANCE_ID" == "None" ] || [ -z "$INSTANCE_ID" ]; then
echo "❌ Нет работающих (running) EC2-инстансов для остановки и удаления."
exit 1
fi
echo "🟡 Останавливаем EC2-инстанс: $INSTANCE_ID..."
aws ec2 stop-instances --instance-ids "$INSTANCE_ID"
echo "⏳ Ждём полной остановки..."
aws ec2 wait instance-stopped --instance-ids "$INSTANCE_ID"
echo "🔴 Удаляем остановленный инстанс: $INSTANCE_ID..."
aws ec2 terminate-instances --instance-ids "$INSTANCE_ID"
echo "⏳ Ждём удаления..."
aws ec2 wait instance-terminated --instance-ids "$INSTANCE_ID"
echo "✅ Успешно остановлен и удалён инстанс: $INSTANCE_ID"