959a391334
Some checks failed
publish docs / publish-docs (push) Has been cancelled
release-please / release-please (push) Has been cancelled
tests / setup (push) Has been cancelled
tests / ${{ matrix.quality-command }} (black) (push) Has been cancelled
tests / ${{ matrix.quality-command }} (mypy) (push) Has been cancelled
tests / ${{ matrix.quality-command }} (ruff) (push) Has been cancelled
tests / test (push) Has been cancelled
tests / all_checks_passed (push) Has been cancelled
Mark stale issues and pull requests / stale (push) Has been cancelled
277 lines
9.6 KiB
Python
277 lines
9.6 KiB
Python
# mypy: ignore-errors
|
|
from __future__ import annotations
|
|
|
|
import io
|
|
import json
|
|
import logging
|
|
from typing import TYPE_CHECKING, Any
|
|
|
|
import boto3 # type: ignore
|
|
from llama_index.core.base.llms.generic_utils import (
|
|
completion_response_to_chat_response,
|
|
stream_completion_response_to_chat_response,
|
|
)
|
|
from llama_index.core.bridge.pydantic import Field
|
|
from llama_index.core.llms import (
|
|
CompletionResponse,
|
|
CustomLLM,
|
|
LLMMetadata,
|
|
)
|
|
from llama_index.core.llms.callbacks import (
|
|
llm_chat_callback,
|
|
llm_completion_callback,
|
|
)
|
|
|
|
if TYPE_CHECKING:
|
|
from collections.abc import Sequence
|
|
|
|
from llama_index.callbacks import CallbackManager
|
|
from llama_index.llms import (
|
|
ChatMessage,
|
|
ChatResponse,
|
|
ChatResponseGen,
|
|
CompletionResponseGen,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LineIterator:
|
|
r"""A helper class for parsing the byte stream input from TGI container.
|
|
|
|
The output of the model will be in the following format:
|
|
```
|
|
b'data:{"token": {"text": " a"}}\n\n'
|
|
b'data:{"token": {"text": " challenging"}}\n\n'
|
|
b'data:{"token": {"text": " problem"
|
|
b'}}'
|
|
...
|
|
```
|
|
|
|
While usually each PayloadPart event from the event stream will contain a byte array
|
|
with a full json, this is not guaranteed and some of the json objects may be split
|
|
across PayloadPart events. For example:
|
|
```
|
|
{'PayloadPart': {'Bytes': b'{"outputs": '}}
|
|
{'PayloadPart': {'Bytes': b'[" problem"]}\n'}}
|
|
```
|
|
|
|
|
|
This class accounts for this by concatenating bytes written via the 'write' function
|
|
and then exposing a method which will return lines (ending with a '\n' character)
|
|
within the buffer via the 'scan_lines' function. It maintains the position of the
|
|
last read position to ensure that previous bytes are not exposed again. It will
|
|
also save any pending lines that doe not end with a '\n' to make sure truncations
|
|
are concatinated
|
|
"""
|
|
|
|
def __init__(self, stream: Any) -> None:
|
|
"""Line iterator initializer."""
|
|
self.byte_iterator = iter(stream)
|
|
self.buffer = io.BytesIO()
|
|
self.read_pos = 0
|
|
|
|
def __iter__(self) -> Any:
|
|
"""Self iterator."""
|
|
return self
|
|
|
|
def __next__(self) -> Any:
|
|
"""Next element from iterator."""
|
|
while True:
|
|
self.buffer.seek(self.read_pos)
|
|
line = self.buffer.readline()
|
|
if line and line[-1] == ord("\n"):
|
|
self.read_pos += len(line)
|
|
return line[:-1]
|
|
try:
|
|
chunk = next(self.byte_iterator)
|
|
except StopIteration:
|
|
if self.read_pos < self.buffer.getbuffer().nbytes:
|
|
continue
|
|
raise
|
|
if "PayloadPart" not in chunk:
|
|
logger.warning("Unknown event type=%s", chunk)
|
|
continue
|
|
self.buffer.seek(0, io.SEEK_END)
|
|
self.buffer.write(chunk["PayloadPart"]["Bytes"])
|
|
|
|
|
|
class SagemakerLLM(CustomLLM):
|
|
"""Sagemaker Inference Endpoint models.
|
|
|
|
To use, you must supply the endpoint name from your deployed
|
|
Sagemaker model & the region where it is deployed.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Sagemaker endpoint.
|
|
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
|
|
"""
|
|
|
|
endpoint_name: str = Field(description="")
|
|
temperature: float = Field(description="The temperature to use for sampling.")
|
|
max_new_tokens: int = Field(description="The maximum number of tokens to generate.")
|
|
context_window: int = Field(
|
|
description="The maximum number of context tokens for the model."
|
|
)
|
|
messages_to_prompt: Any = Field(
|
|
description="The function to convert messages to a prompt.", exclude=True
|
|
)
|
|
completion_to_prompt: Any = Field(
|
|
description="The function to convert a completion to a prompt.", exclude=True
|
|
)
|
|
generate_kwargs: dict[str, Any] = Field(
|
|
default_factory=dict, description="Kwargs used for generation."
|
|
)
|
|
model_kwargs: dict[str, Any] = Field(
|
|
default_factory=dict, description="Kwargs used for model initialization."
|
|
)
|
|
verbose: bool = Field(description="Whether to print verbose output.")
|
|
|
|
_boto_client: Any = boto3.client(
|
|
"sagemaker-runtime",
|
|
) # TODO make it an optional field
|
|
|
|
def __init__(
|
|
self,
|
|
endpoint_name: str | None = "",
|
|
temperature: float = 0.1,
|
|
max_new_tokens: int = 512, # to review defaults
|
|
context_window: int = 2048, # to review defaults
|
|
messages_to_prompt: Any = None,
|
|
completion_to_prompt: Any = None,
|
|
callback_manager: CallbackManager | None = None,
|
|
generate_kwargs: dict[str, Any] | None = None,
|
|
model_kwargs: dict[str, Any] | None = None,
|
|
verbose: bool = True,
|
|
) -> None:
|
|
"""SagemakerLLM initializer."""
|
|
model_kwargs = model_kwargs or {}
|
|
model_kwargs.update({"n_ctx": context_window, "verbose": verbose})
|
|
|
|
messages_to_prompt = messages_to_prompt or {}
|
|
completion_to_prompt = completion_to_prompt or {}
|
|
|
|
generate_kwargs = generate_kwargs or {}
|
|
generate_kwargs.update(
|
|
{"temperature": temperature, "max_tokens": max_new_tokens}
|
|
)
|
|
|
|
super().__init__(
|
|
endpoint_name=endpoint_name,
|
|
temperature=temperature,
|
|
context_window=context_window,
|
|
max_new_tokens=max_new_tokens,
|
|
messages_to_prompt=messages_to_prompt,
|
|
completion_to_prompt=completion_to_prompt,
|
|
callback_manager=callback_manager,
|
|
generate_kwargs=generate_kwargs,
|
|
model_kwargs=model_kwargs,
|
|
verbose=verbose,
|
|
)
|
|
|
|
@property
|
|
def inference_params(self):
|
|
# TODO expose the rest of params
|
|
return {
|
|
"do_sample": True,
|
|
"top_p": 0.7,
|
|
"temperature": self.temperature,
|
|
"top_k": 50,
|
|
"max_new_tokens": self.max_new_tokens,
|
|
}
|
|
|
|
@property
|
|
def metadata(self) -> LLMMetadata:
|
|
"""Get LLM metadata."""
|
|
return LLMMetadata(
|
|
context_window=self.context_window,
|
|
num_output=self.max_new_tokens,
|
|
model_name="Sagemaker LLama 2",
|
|
)
|
|
|
|
@llm_completion_callback()
|
|
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
|
self.generate_kwargs.update({"stream": False})
|
|
|
|
is_formatted = kwargs.pop("formatted", False)
|
|
if not is_formatted:
|
|
prompt = self.completion_to_prompt(prompt)
|
|
|
|
request_params = {
|
|
"inputs": prompt,
|
|
"stream": False,
|
|
"parameters": self.inference_params,
|
|
}
|
|
|
|
resp = self._boto_client.invoke_endpoint(
|
|
EndpointName=self.endpoint_name,
|
|
Body=json.dumps(request_params),
|
|
ContentType="application/json",
|
|
)
|
|
|
|
response_body = resp["Body"]
|
|
response_str = response_body.read().decode("utf-8")
|
|
response_dict = json.loads(response_str)
|
|
|
|
return CompletionResponse(
|
|
text=response_dict[0]["generated_text"][len(prompt) :], raw=resp
|
|
)
|
|
|
|
@llm_completion_callback()
|
|
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
|
|
def get_stream():
|
|
text = ""
|
|
|
|
request_params = {
|
|
"inputs": prompt,
|
|
"stream": True,
|
|
"parameters": self.inference_params,
|
|
}
|
|
resp = self._boto_client.invoke_endpoint_with_response_stream(
|
|
EndpointName=self.endpoint_name,
|
|
Body=json.dumps(request_params),
|
|
ContentType="application/json",
|
|
)
|
|
|
|
event_stream = resp["Body"]
|
|
start_json = b"{"
|
|
stop_token = "<|endoftext|>"
|
|
first_token = True
|
|
|
|
for line in LineIterator(event_stream):
|
|
if line != b"" and start_json in line:
|
|
data = json.loads(line[line.find(start_json) :].decode("utf-8"))
|
|
special = data["token"]["special"]
|
|
stop = data["token"]["text"] == stop_token
|
|
if not special and not stop:
|
|
delta = data["token"]["text"]
|
|
# trim the leading space for the first token if present
|
|
if first_token:
|
|
delta = delta.lstrip()
|
|
first_token = False
|
|
text += delta
|
|
yield CompletionResponse(delta=delta, text=text, raw=data)
|
|
|
|
return get_stream()
|
|
|
|
@llm_chat_callback()
|
|
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
|
|
prompt = self.messages_to_prompt(messages)
|
|
completion_response = self.complete(prompt, formatted=True, **kwargs)
|
|
return completion_response_to_chat_response(completion_response)
|
|
|
|
@llm_chat_callback()
|
|
def stream_chat(
|
|
self, messages: Sequence[ChatMessage], **kwargs: Any
|
|
) -> ChatResponseGen:
|
|
prompt = self.messages_to_prompt(messages)
|
|
completion_response = self.stream_complete(prompt, formatted=True, **kwargs)
|
|
return stream_completion_response_to_chat_response(completion_response)
|