34 lines
968 B
Python
34 lines
968 B
Python
import json
|
|
from elasticsearch import Elasticsearch
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
es = Elasticsearch([{'host': 'localhost', 'port': 9200, 'scheme': 'http'}])
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
|
|
|
|
|
def load_drug_data(json_path):
|
|
with open(json_path, 'r', encoding='utf-8') as f:
|
|
data = json.load(f)
|
|
return data
|
|
|
|
|
|
def index_documents(data):
|
|
for i, item in enumerate(data):
|
|
doc_text = f"{item['link']} {item.get('pribalovy_letak', '')} {item.get('spc', '')}"
|
|
|
|
vector = embeddings.embed_query(doc_text)
|
|
|
|
es.index(index='drug_docs', id=i, body={
|
|
'text': doc_text,
|
|
'vector': vector,
|
|
'full_data': item
|
|
})
|
|
|
|
|
|
data_path = "data/cleaned_general_info_additional.json"
|
|
drug_data = load_drug_data(data_path)
|
|
index_documents(drug_data)
|
|
|
|
print("Индексирование завершено.")
|