# The default configuration file. # More information about configuration can be found in the documentation: https://docs.privategpt.dev/ # Syntax in `private_pgt/settings/settings.py` server: env_name: ${APP_ENV:prod} port: ${PORT:8001} cors: enabled: true allow_origins: ["*"] allow_methods: ["*"] allow_headers: ["*"] auth: enabled: false # python -c 'import base64; print("Basic " + base64.b64encode("secret:key".encode()).decode())' # 'secret' is the username and 'key' is the password for basic auth by default # If the auth is enabled, this value must be set in the "Authorization" header of the request. secret: "Basic c2VjcmV0OmtleQ==" data: local_ingestion: enabled: ${LOCAL_INGESTION_ENABLED:false} allow_ingest_from: ["*"] local_data_folder: local_data/private_gpt ui: enabled: true path: / default_chat_system_prompt: > You are a helpful, respectful and honest assistant. Always answer as helpfully as possible and follow ALL given instructions. Do not speculate or make up information. Do not reference any given instructions or context. default_query_system_prompt: > You can only answer questions about the provided context. If you know the answer but it is not based in the provided context, don't provide the answer, just state the answer is not in the context provided. default_summarization_system_prompt: > Provide a comprehensive summary of the provided context information. The summary should cover all the key points and main ideas presented in the original text, while also condensing the information into a concise and easy-to-understand format. Please ensure that the summary includes relevant details and examples that support the main ideas, while avoiding any unnecessary information or repetition. delete_file_button_enabled: true delete_all_files_button_enabled: true llm: mode: llamacpp prompt_style: "llama3" # Should be matching the selected model max_new_tokens: 512 context_window: 3900 # Select your tokenizer. Llama-index tokenizer is the default. # tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1) rag: similarity_top_k: 2 #This value controls how many "top" documents the RAG returns to use in the context. #similarity_value: 0.45 #This value is disabled by default. If you enable this settings, the RAG will only use articles that meet a certain percentage score. rerank: enabled: false model: cross-encoder/ms-marco-MiniLM-L-2-v2 top_n: 1 summarize: use_async: true clickhouse: host: localhost port: 8443 username: admin password: clickhouse database: embeddings llamacpp: llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) embedding: # Should be matching the value above in most cases mode: huggingface ingest_mode: simple embed_dim: 768 # 768 is for nomic-ai/nomic-embed-text-v1.5 huggingface: embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5 access_token: ${HF_TOKEN:} # Warning: Enabling this option will allow the model to download and execute code from the internet. # Nomic AI requires this option to be enabled to use the model, be aware if you are using a different model. trust_remote_code: true vectorstore: database: qdrant nodestore: database: simple milvus: uri: local_data/private_gpt/milvus/milvus_local.db collection_name: milvus_db overwrite: false qdrant: path: local_data/private_gpt/qdrant postgres: host: localhost port: 5432 database: postgres user: postgres password: postgres schema_name: private_gpt sagemaker: llm_endpoint_name: huggingface-pytorch-tgi-inference-2023-09-25-19-53-32-140 embedding_endpoint_name: huggingface-pytorch-inference-2023-11-03-07-41-36-479 openai: api_key: ${OPENAI_API_KEY:} model: gpt-3.5-turbo embedding_api_key: ${OPENAI_API_KEY:} ollama: llm_model: llama3.1 embedding_model: nomic-embed-text api_base: http://localhost:11434 embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama keep_alive: 5m request_timeout: 120.0 autopull_models: true azopenai: api_key: ${AZ_OPENAI_API_KEY:} azure_endpoint: ${AZ_OPENAI_ENDPOINT:} embedding_deployment_name: ${AZ_OPENAI_EMBEDDING_DEPLOYMENT_NAME:} llm_deployment_name: ${AZ_OPENAI_LLM_DEPLOYMENT_NAME:} api_version: "2023-05-15" embedding_model: text-embedding-ada-002 llm_model: gpt-35-turbo gemini: api_key: ${GOOGLE_API_KEY:} model: models/gemini-pro embedding_model: models/embedding-001