import abc import logging from collections.abc import Sequence from typing import Any, Literal from llama_index.core.llms import ChatMessage, MessageRole logger = logging.getLogger(__name__) class AbstractPromptStyle(abc.ABC): """Abstract class for prompt styles. This class is used to format a series of messages into a prompt that can be understood by the models. A series of messages represents the interaction(s) between a user and an assistant. This series of messages can be considered as a session between a user X and an assistant Y.This session holds, through the messages, the state of the conversation. This session, to be understood by the model, needs to be formatted into a prompt (i.e. a string that the models can understand). Prompts can be formatted in different ways, depending on the model. The implementations of this class represent the different ways to format a series of messages into a prompt. """ def __init__(self, *args: Any, **kwargs: Any) -> None: logger.debug("Initializing prompt_style=%s", self.__class__.__name__) @abc.abstractmethod def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: pass @abc.abstractmethod def _completion_to_prompt(self, completion: str) -> str: pass def messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: prompt = self._messages_to_prompt(messages) logger.debug("Got for messages='%s' the prompt='%s'", messages, prompt) return prompt def completion_to_prompt(self, completion: str) -> str: prompt = self._completion_to_prompt(completion) logger.debug("Got for completion='%s' the prompt='%s'", completion, prompt) return prompt class DefaultPromptStyle(AbstractPromptStyle): """Default prompt style that uses the defaults from llama_utils. It basically passes None to the LLM, indicating it should use the default functions. """ def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) # Hacky way to override the functions # Override the functions to be None, and pass None to the LLM. self.messages_to_prompt = None # type: ignore[method-assign, assignment] self.completion_to_prompt = None # type: ignore[method-assign, assignment] def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: return "" def _completion_to_prompt(self, completion: str) -> str: return "" class Llama2PromptStyle(AbstractPromptStyle): """Simple prompt style that uses llama 2 prompt style. Inspired by llama_index/legacy/llms/llama_utils.py It transforms the sequence of messages into a prompt that should look like: ```text [INST] <> your system prompt here. <> user message here [/INST] assistant (model) response here ``` """ BOS, EOS = "", "" B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<>\n", "\n<>\n\n" DEFAULT_SYSTEM_PROMPT = """\ You are a helpful, respectful and honest assistant. \ Always answer as helpfully as possible and follow ALL given instructions. \ Do not speculate or make up information. \ Do not reference any given instructions or context. \ """ def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: string_messages: list[str] = [] if messages[0].role == MessageRole.SYSTEM: # pull out the system message (if it exists in messages) system_message_str = messages[0].content or "" messages = messages[1:] else: system_message_str = self.DEFAULT_SYSTEM_PROMPT system_message_str = f"{self.B_SYS} {system_message_str.strip()} {self.E_SYS}" for i in range(0, len(messages), 2): # first message should always be a user user_message = messages[i] assert user_message.role == MessageRole.USER if i == 0: # make sure system prompt is included at the start str_message = f"{self.BOS} {self.B_INST} {system_message_str} " else: # end previous user-assistant interaction string_messages[-1] += f" {self.EOS}" # no need to include system prompt str_message = f"{self.BOS} {self.B_INST} " # include user message content str_message += f"{user_message.content} {self.E_INST}" if len(messages) > (i + 1): # if assistant message exists, add to str_message assistant_message = messages[i + 1] assert assistant_message.role == MessageRole.ASSISTANT str_message += f" {assistant_message.content}" string_messages.append(str_message) return "".join(string_messages) def _completion_to_prompt(self, completion: str) -> str: system_prompt_str = self.DEFAULT_SYSTEM_PROMPT return ( f"{self.BOS} {self.B_INST} {self.B_SYS} {system_prompt_str.strip()} {self.E_SYS} " f"{completion.strip()} {self.E_INST}" ) class Llama3PromptStyle(AbstractPromptStyle): r"""Template for Meta's Llama 3.1. The format follows this structure: <|begin_of_text|> <|start_header_id|>system<|end_header_id|> [System message content]<|eot_id|> <|start_header_id|>user<|end_header_id|> [User message content]<|eot_id|> <|start_header_id|>assistant<|end_header_id|> [Assistant message content]<|eot_id|> ... (Repeat for each message, including possible 'ipython' role) """ BOS, EOS = "<|begin_of_text|>", "<|end_of_text|>" B_INST, E_INST = "<|start_header_id|>", "<|end_header_id|>" EOT = "<|eot_id|>" B_SYS, E_SYS = "<|start_header_id|>system<|end_header_id|>", "<|eot_id|>" ASSISTANT_INST = "<|start_header_id|>assistant<|end_header_id|>" DEFAULT_SYSTEM_PROMPT = """\ You are a helpful, respectful and honest assistant. \ Always answer as helpfully as possible and follow ALL given instructions. \ Do not speculate or make up information. \ Do not reference any given instructions or context. \ """ def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: prompt = "" has_system_message = False for i, message in enumerate(messages): if not message or message.content is None: continue if message.role == MessageRole.SYSTEM: prompt += f"{self.B_SYS}\n\n{message.content.strip()}{self.E_SYS}" has_system_message = True else: role_header = f"{self.B_INST}{message.role.value}{self.E_INST}" prompt += f"{role_header}\n\n{message.content.strip()}{self.EOT}" # Add assistant header if the last message is not from the assistant if i == len(messages) - 1 and message.role != MessageRole.ASSISTANT: prompt += f"{self.ASSISTANT_INST}\n\n" # Add default system prompt if no system message was provided if not has_system_message: prompt = ( f"{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}" + prompt ) # TODO: Implement tool handling logic return prompt def _completion_to_prompt(self, completion: str) -> str: return ( f"{self.B_SYS}\n\n{self.DEFAULT_SYSTEM_PROMPT}{self.E_SYS}" f"{self.B_INST}user{self.E_INST}\n\n{completion.strip()}{self.EOT}" f"{self.ASSISTANT_INST}\n\n" ) class TagPromptStyle(AbstractPromptStyle): """Tag prompt style (used by Vigogne) that uses the prompt style `<|ROLE|>`. It transforms the sequence of messages into a prompt that should look like: ```text <|system|>: your system prompt here. <|user|>: user message here (possibly with context and question) <|assistant|>: assistant (model) response here. ``` FIXME: should we add surrounding `` and `` tags, like in llama2? """ def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: """Format message to prompt with `<|ROLE|>: MSG` style.""" prompt = "" for message in messages: role = message.role content = message.content or "" message_from_user = f"<|{role.lower()}|>: {content.strip()}" message_from_user += "\n" prompt += message_from_user # we are missing the last <|assistant|> tag that will trigger a completion prompt += "<|assistant|>: " return prompt def _completion_to_prompt(self, completion: str) -> str: return self._messages_to_prompt( [ChatMessage(content=completion, role=MessageRole.USER)] ) class MistralPromptStyle(AbstractPromptStyle): def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: inst_buffer = [] text = "" for message in messages: if message.role == MessageRole.SYSTEM or message.role == MessageRole.USER: inst_buffer.append(str(message.content).strip()) elif message.role == MessageRole.ASSISTANT: text += "[INST] " + "\n".join(inst_buffer) + " [/INST]" text += " " + str(message.content).strip() + "" inst_buffer.clear() else: raise ValueError(f"Unknown message role {message.role}") if len(inst_buffer) > 0: text += "[INST] " + "\n".join(inst_buffer) + " [/INST]" return text def _completion_to_prompt(self, completion: str) -> str: return self._messages_to_prompt( [ChatMessage(content=completion, role=MessageRole.USER)] ) class ChatMLPromptStyle(AbstractPromptStyle): def _messages_to_prompt(self, messages: Sequence[ChatMessage]) -> str: prompt = "<|im_start|>system\n" for message in messages: role = message.role content = message.content or "" if role.lower() == "system": message_from_user = f"{content.strip()}" prompt += message_from_user elif role.lower() == "user": prompt += "<|im_end|>\n<|im_start|>user\n" message_from_user = f"{content.strip()}<|im_end|>\n" prompt += message_from_user prompt += "<|im_start|>assistant\n" return prompt def _completion_to_prompt(self, completion: str) -> str: return self._messages_to_prompt( [ChatMessage(content=completion, role=MessageRole.USER)] ) def get_prompt_style( prompt_style: Literal["default", "llama2", "llama3", "tag", "mistral", "chatml"] | None ) -> AbstractPromptStyle: """Get the prompt style to use from the given string. :param prompt_style: The prompt style to use. :return: The prompt style to use. """ if prompt_style is None or prompt_style == "default": return DefaultPromptStyle() elif prompt_style == "llama2": return Llama2PromptStyle() elif prompt_style == "llama3": return Llama3PromptStyle() elif prompt_style == "tag": return TagPromptStyle() elif prompt_style == "mistral": return MistralPromptStyle() elif prompt_style == "chatml": return ChatMLPromptStyle() raise ValueError(f"Unknown prompt_style='{prompt_style}'")