# import requests # # API_TOKEN = "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" # API_URL = "https://api-inference.huggingface.co/models/google/mt5-base" # # headers = { # "Authorization": f"Bearer {API_TOKEN}", # "Content-Type": "application/json" # } # # def query_mT5(prompt): # payload = { # "inputs": prompt, # "parameters": { # "max_length": 100, # "do_sample": True, # "temperature": 0.7 # } # } # response = requests.post(API_URL, headers=headers, json=payload) # return response.json() # # # Пример использования # result = query_mT5("Aké sú účinné lieky na horúčku?") # print("Ответ от mT5:", result) from transformers import AutoTokenizer, MT5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small") # training input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids outputs = model(input_ids=input_ids, labels=labels) loss = outputs.loss logits = outputs.logits # inference input_ids = tokenizer( "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" ).input_ids # Batch size 1 outputs = model.generate(input_ids, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) # studies have shown that owning a dog is good for you.