Bakalarska_praca/private_gpt/server/recipes/summarize/summarize_router.py

87 lines
2.9 KiB
Python
Raw Normal View History

2024-09-27 16:52:16 +00:00
from fastapi import APIRouter, Depends, Request
from pydantic import BaseModel
from starlette.responses import StreamingResponse
from private_gpt.open_ai.extensions.context_filter import ContextFilter
from private_gpt.open_ai.openai_models import (
to_openai_sse_stream,
)
from private_gpt.server.recipes.summarize.summarize_service import SummarizeService
from private_gpt.server.utils.auth import authenticated
summarize_router = APIRouter(prefix="/v1", dependencies=[Depends(authenticated)])
class SummarizeBody(BaseModel):
text: str | None = None
use_context: bool = False
context_filter: ContextFilter | None = None
prompt: str | None = None
instructions: str | None = None
stream: bool = False
class SummarizeResponse(BaseModel):
summary: str
@summarize_router.post(
"/summarize",
response_model=None,
summary="Summarize",
responses={200: {"model": SummarizeResponse}},
tags=["Recipes"],
)
def summarize(
request: Request, body: SummarizeBody
) -> SummarizeResponse | StreamingResponse:
"""Given a text, the model will return a summary.
Optionally include `instructions` to influence the way the summary is generated.
If `use_context`
is set to `true`, the model will also use the content coming from the ingested
documents in the summary. The documents being used can
be filtered by their metadata using the `context_filter`.
Ingested documents metadata can be found using `/ingest/list` endpoint.
If you want all ingested documents to be used, remove `context_filter` altogether.
If `prompt` is set, it will be used as the prompt for the summarization,
otherwise the default prompt will be used.
When using `'stream': true`, the API will return data chunks following [OpenAI's
streaming model](https://platform.openai.com/docs/api-reference/chat/streaming):
```
{"id":"12345","object":"completion.chunk","created":1694268190,
"model":"private-gpt","choices":[{"index":0,"delta":{"content":"Hello"},
"finish_reason":null}]}
```
"""
service: SummarizeService = request.state.injector.get(SummarizeService)
if body.stream:
completion_gen = service.stream_summarize(
text=body.text,
instructions=body.instructions,
use_context=body.use_context,
context_filter=body.context_filter,
prompt=body.prompt,
)
return StreamingResponse(
to_openai_sse_stream(
response_generator=completion_gen,
),
media_type="text/event-stream",
)
else:
completion = service.summarize(
text=body.text,
instructions=body.instructions,
use_context=body.use_context,
context_filter=body.context_filter,
prompt=body.prompt,
)
return SummarizeResponse(
summary=completion,
)