518 lines
20 KiB
Python
518 lines
20 KiB
Python
|
import abc
|
||
|
import itertools
|
||
|
import logging
|
||
|
import multiprocessing
|
||
|
import multiprocessing.pool
|
||
|
import os
|
||
|
import threading
|
||
|
from pathlib import Path
|
||
|
from queue import Queue
|
||
|
from typing import Any
|
||
|
|
||
|
from llama_index.core.data_structs import IndexDict
|
||
|
from llama_index.core.embeddings.utils import EmbedType
|
||
|
from llama_index.core.indices import VectorStoreIndex, load_index_from_storage
|
||
|
from llama_index.core.indices.base import BaseIndex
|
||
|
from llama_index.core.ingestion import run_transformations
|
||
|
from llama_index.core.schema import BaseNode, Document, TransformComponent
|
||
|
from llama_index.core.storage import StorageContext
|
||
|
|
||
|
from private_gpt.components.ingest.ingest_helper import IngestionHelper
|
||
|
from private_gpt.paths import local_data_path
|
||
|
from private_gpt.settings.settings import Settings
|
||
|
from private_gpt.utils.eta import eta
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class BaseIngestComponent(abc.ABC):
|
||
|
def __init__(
|
||
|
self,
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
logger.debug("Initializing base ingest component type=%s", type(self).__name__)
|
||
|
self.storage_context = storage_context
|
||
|
self.embed_model = embed_model
|
||
|
self.transformations = transformations
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def delete(self, doc_id: str) -> None:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class BaseIngestComponentWithIndex(BaseIngestComponent, abc.ABC):
|
||
|
def __init__(
|
||
|
self,
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
|
||
|
|
||
|
self.show_progress = True
|
||
|
self._index_thread_lock = (
|
||
|
threading.Lock()
|
||
|
) # Thread lock! Not Multiprocessing lock
|
||
|
self._index = self._initialize_index()
|
||
|
|
||
|
def _initialize_index(self) -> BaseIndex[IndexDict]:
|
||
|
"""Initialize the index from the storage context."""
|
||
|
try:
|
||
|
# Load the index with store_nodes_override=True to be able to delete them
|
||
|
index = load_index_from_storage(
|
||
|
storage_context=self.storage_context,
|
||
|
store_nodes_override=True, # Force store nodes in index and document stores
|
||
|
show_progress=self.show_progress,
|
||
|
embed_model=self.embed_model,
|
||
|
transformations=self.transformations,
|
||
|
)
|
||
|
except ValueError:
|
||
|
# There are no index in the storage context, creating a new one
|
||
|
logger.info("Creating a new vector store index")
|
||
|
index = VectorStoreIndex.from_documents(
|
||
|
[],
|
||
|
storage_context=self.storage_context,
|
||
|
store_nodes_override=True, # Force store nodes in index and document stores
|
||
|
show_progress=self.show_progress,
|
||
|
embed_model=self.embed_model,
|
||
|
transformations=self.transformations,
|
||
|
)
|
||
|
index.storage_context.persist(persist_dir=local_data_path)
|
||
|
return index
|
||
|
|
||
|
def _save_index(self) -> None:
|
||
|
self._index.storage_context.persist(persist_dir=local_data_path)
|
||
|
|
||
|
def delete(self, doc_id: str) -> None:
|
||
|
with self._index_thread_lock:
|
||
|
# Delete the document from the index
|
||
|
self._index.delete_ref_doc(doc_id, delete_from_docstore=True)
|
||
|
|
||
|
# Save the index
|
||
|
self._save_index()
|
||
|
|
||
|
|
||
|
class SimpleIngestComponent(BaseIngestComponentWithIndex):
|
||
|
def __init__(
|
||
|
self,
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
|
||
|
|
||
|
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
|
||
|
logger.info("Ingesting file_name=%s", file_name)
|
||
|
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
|
||
|
logger.info(
|
||
|
"Transformed file=%s into count=%s documents", file_name, len(documents)
|
||
|
)
|
||
|
logger.debug("Saving the documents in the index and doc store")
|
||
|
return self._save_docs(documents)
|
||
|
|
||
|
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
|
||
|
saved_documents = []
|
||
|
for file_name, file_data in files:
|
||
|
documents = IngestionHelper.transform_file_into_documents(
|
||
|
file_name, file_data
|
||
|
)
|
||
|
saved_documents.extend(self._save_docs(documents))
|
||
|
return saved_documents
|
||
|
|
||
|
def _save_docs(self, documents: list[Document]) -> list[Document]:
|
||
|
logger.debug("Transforming count=%s documents into nodes", len(documents))
|
||
|
with self._index_thread_lock:
|
||
|
for document in documents:
|
||
|
self._index.insert(document, show_progress=True)
|
||
|
logger.debug("Persisting the index and nodes")
|
||
|
# persist the index and nodes
|
||
|
self._save_index()
|
||
|
logger.debug("Persisted the index and nodes")
|
||
|
return documents
|
||
|
|
||
|
|
||
|
class BatchIngestComponent(BaseIngestComponentWithIndex):
|
||
|
"""Parallelize the file reading and parsing on multiple CPU core.
|
||
|
|
||
|
This also makes the embeddings to be computed in batches (on GPU or CPU).
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
count_workers: int,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
|
||
|
# Make an efficient use of the CPU and GPU, the embedding
|
||
|
# must be in the transformations
|
||
|
assert (
|
||
|
len(self.transformations) >= 2
|
||
|
), "Embeddings must be in the transformations"
|
||
|
assert count_workers > 0, "count_workers must be > 0"
|
||
|
self.count_workers = count_workers
|
||
|
|
||
|
self._file_to_documents_work_pool = multiprocessing.Pool(
|
||
|
processes=self.count_workers
|
||
|
)
|
||
|
|
||
|
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
|
||
|
logger.info("Ingesting file_name=%s", file_name)
|
||
|
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
|
||
|
logger.info(
|
||
|
"Transformed file=%s into count=%s documents", file_name, len(documents)
|
||
|
)
|
||
|
logger.debug("Saving the documents in the index and doc store")
|
||
|
return self._save_docs(documents)
|
||
|
|
||
|
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
|
||
|
documents = list(
|
||
|
itertools.chain.from_iterable(
|
||
|
self._file_to_documents_work_pool.starmap(
|
||
|
IngestionHelper.transform_file_into_documents, files
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
logger.info(
|
||
|
"Transformed count=%s files into count=%s documents",
|
||
|
len(files),
|
||
|
len(documents),
|
||
|
)
|
||
|
return self._save_docs(documents)
|
||
|
|
||
|
def _save_docs(self, documents: list[Document]) -> list[Document]:
|
||
|
logger.debug("Transforming count=%s documents into nodes", len(documents))
|
||
|
nodes = run_transformations(
|
||
|
documents, # type: ignore[arg-type]
|
||
|
self.transformations,
|
||
|
show_progress=self.show_progress,
|
||
|
)
|
||
|
# Locking the index to avoid concurrent writes
|
||
|
with self._index_thread_lock:
|
||
|
logger.info("Inserting count=%s nodes in the index", len(nodes))
|
||
|
self._index.insert_nodes(nodes, show_progress=True)
|
||
|
for document in documents:
|
||
|
self._index.docstore.set_document_hash(
|
||
|
document.get_doc_id(), document.hash
|
||
|
)
|
||
|
logger.debug("Persisting the index and nodes")
|
||
|
# persist the index and nodes
|
||
|
self._save_index()
|
||
|
logger.debug("Persisted the index and nodes")
|
||
|
return documents
|
||
|
|
||
|
|
||
|
class ParallelizedIngestComponent(BaseIngestComponentWithIndex):
|
||
|
"""Parallelize the file ingestion (file reading, embeddings, and index insertion).
|
||
|
|
||
|
This use the CPU and GPU in parallel (both running at the same time), and
|
||
|
reduce the memory pressure by not loading all the files in memory at the same time.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
count_workers: int,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
|
||
|
# To make an efficient use of the CPU and GPU, the embeddings
|
||
|
# must be in the transformations (to be computed in batches)
|
||
|
assert (
|
||
|
len(self.transformations) >= 2
|
||
|
), "Embeddings must be in the transformations"
|
||
|
assert count_workers > 0, "count_workers must be > 0"
|
||
|
self.count_workers = count_workers
|
||
|
# We are doing our own multiprocessing
|
||
|
# To do not collide with the multiprocessing of huggingface, we disable it
|
||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||
|
|
||
|
self._ingest_work_pool = multiprocessing.pool.ThreadPool(
|
||
|
processes=self.count_workers
|
||
|
)
|
||
|
|
||
|
self._file_to_documents_work_pool = multiprocessing.Pool(
|
||
|
processes=self.count_workers
|
||
|
)
|
||
|
|
||
|
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
|
||
|
logger.info("Ingesting file_name=%s", file_name)
|
||
|
# Running in a single (1) process to release the current
|
||
|
# thread, and take a dedicated CPU core for computation
|
||
|
documents = self._file_to_documents_work_pool.apply(
|
||
|
IngestionHelper.transform_file_into_documents, (file_name, file_data)
|
||
|
)
|
||
|
logger.info(
|
||
|
"Transformed file=%s into count=%s documents", file_name, len(documents)
|
||
|
)
|
||
|
logger.debug("Saving the documents in the index and doc store")
|
||
|
return self._save_docs(documents)
|
||
|
|
||
|
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
|
||
|
# Lightweight threads, used for parallelize the
|
||
|
# underlying IO calls made in the ingestion
|
||
|
|
||
|
documents = list(
|
||
|
itertools.chain.from_iterable(
|
||
|
self._ingest_work_pool.starmap(self.ingest, files)
|
||
|
)
|
||
|
)
|
||
|
return documents
|
||
|
|
||
|
def _save_docs(self, documents: list[Document]) -> list[Document]:
|
||
|
logger.debug("Transforming count=%s documents into nodes", len(documents))
|
||
|
nodes = run_transformations(
|
||
|
documents, # type: ignore[arg-type]
|
||
|
self.transformations,
|
||
|
show_progress=self.show_progress,
|
||
|
)
|
||
|
# Locking the index to avoid concurrent writes
|
||
|
with self._index_thread_lock:
|
||
|
logger.info("Inserting count=%s nodes in the index", len(nodes))
|
||
|
self._index.insert_nodes(nodes, show_progress=True)
|
||
|
for document in documents:
|
||
|
self._index.docstore.set_document_hash(
|
||
|
document.get_doc_id(), document.hash
|
||
|
)
|
||
|
logger.debug("Persisting the index and nodes")
|
||
|
# persist the index and nodes
|
||
|
self._save_index()
|
||
|
logger.debug("Persisted the index and nodes")
|
||
|
return documents
|
||
|
|
||
|
def __del__(self) -> None:
|
||
|
# We need to do the appropriate cleanup of the multiprocessing pools
|
||
|
# when the object is deleted. Using root logger to avoid
|
||
|
# the logger to be deleted before the pool
|
||
|
logging.debug("Closing the ingest work pool")
|
||
|
self._ingest_work_pool.close()
|
||
|
self._ingest_work_pool.join()
|
||
|
self._ingest_work_pool.terminate()
|
||
|
logging.debug("Closing the file to documents work pool")
|
||
|
self._file_to_documents_work_pool.close()
|
||
|
self._file_to_documents_work_pool.join()
|
||
|
self._file_to_documents_work_pool.terminate()
|
||
|
|
||
|
|
||
|
class PipelineIngestComponent(BaseIngestComponentWithIndex):
|
||
|
"""Pipeline ingestion - keeping the embedding worker pool as busy as possible.
|
||
|
|
||
|
This class implements a threaded ingestion pipeline, which comprises two threads
|
||
|
and two queues. The primary thread is responsible for reading and parsing files
|
||
|
into documents. These documents are then placed into a queue, which is
|
||
|
distributed to a pool of worker processes for embedding computation. After
|
||
|
embedding, the documents are transferred to another queue where they are
|
||
|
accumulated until a threshold is reached. Upon reaching this threshold, the
|
||
|
accumulated documents are flushed to the document store, index, and vector
|
||
|
store.
|
||
|
|
||
|
Exception handling ensures robustness against erroneous files. However, in the
|
||
|
pipelined design, one error can lead to the discarding of multiple files. Any
|
||
|
discarded files will be reported.
|
||
|
"""
|
||
|
|
||
|
NODE_FLUSH_COUNT = 5000 # Save the index every # nodes.
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
count_workers: int,
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> None:
|
||
|
super().__init__(storage_context, embed_model, transformations, *args, **kwargs)
|
||
|
self.count_workers = count_workers
|
||
|
assert (
|
||
|
len(self.transformations) >= 2
|
||
|
), "Embeddings must be in the transformations"
|
||
|
assert count_workers > 0, "count_workers must be > 0"
|
||
|
self.count_workers = count_workers
|
||
|
# We are doing our own multiprocessing
|
||
|
# To do not collide with the multiprocessing of huggingface, we disable it
|
||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||
|
|
||
|
# doc_q stores parsed files as Document chunks.
|
||
|
# Using a shallow queue causes the filesystem parser to block
|
||
|
# when it reaches capacity. This ensures it doesn't outpace the
|
||
|
# computationally intensive embeddings phase, avoiding unnecessary
|
||
|
# memory consumption. The semaphore is used to bound the async worker
|
||
|
# embedding computations to cause the doc Q to fill and block.
|
||
|
self.doc_semaphore = multiprocessing.Semaphore(
|
||
|
self.count_workers
|
||
|
) # limit the doc queue to # items.
|
||
|
self.doc_q: Queue[tuple[str, str | None, list[Document] | None]] = Queue(20)
|
||
|
# node_q stores documents parsed into nodes (embeddings).
|
||
|
# Larger queue size so we don't block the embedding workers during a slow
|
||
|
# index update.
|
||
|
self.node_q: Queue[
|
||
|
tuple[str, str | None, list[Document] | None, list[BaseNode] | None]
|
||
|
] = Queue(40)
|
||
|
threading.Thread(target=self._doc_to_node, daemon=True).start()
|
||
|
threading.Thread(target=self._write_nodes, daemon=True).start()
|
||
|
|
||
|
def _doc_to_node(self) -> None:
|
||
|
# Parse documents into nodes
|
||
|
with multiprocessing.pool.ThreadPool(processes=self.count_workers) as pool:
|
||
|
while True:
|
||
|
try:
|
||
|
cmd, file_name, documents = self.doc_q.get(
|
||
|
block=True
|
||
|
) # Documents for a file
|
||
|
if cmd == "process":
|
||
|
# Push CPU/GPU embedding work to the worker pool
|
||
|
# Acquire semaphore to control access to worker pool
|
||
|
self.doc_semaphore.acquire()
|
||
|
pool.apply_async(
|
||
|
self._doc_to_node_worker, (file_name, documents)
|
||
|
)
|
||
|
elif cmd == "quit":
|
||
|
break
|
||
|
finally:
|
||
|
if cmd != "process":
|
||
|
self.doc_q.task_done() # unblock Q joins
|
||
|
|
||
|
def _doc_to_node_worker(self, file_name: str, documents: list[Document]) -> None:
|
||
|
# CPU/GPU intensive work in its own process
|
||
|
try:
|
||
|
nodes = run_transformations(
|
||
|
documents, # type: ignore[arg-type]
|
||
|
self.transformations,
|
||
|
show_progress=self.show_progress,
|
||
|
)
|
||
|
self.node_q.put(("process", file_name, documents, nodes))
|
||
|
finally:
|
||
|
self.doc_semaphore.release()
|
||
|
self.doc_q.task_done() # unblock Q joins
|
||
|
|
||
|
def _save_docs(
|
||
|
self, files: list[str], documents: list[Document], nodes: list[BaseNode]
|
||
|
) -> None:
|
||
|
try:
|
||
|
logger.info(
|
||
|
f"Saving {len(files)} files ({len(documents)} documents / {len(nodes)} nodes)"
|
||
|
)
|
||
|
self._index.insert_nodes(nodes)
|
||
|
for document in documents:
|
||
|
self._index.docstore.set_document_hash(
|
||
|
document.get_doc_id(), document.hash
|
||
|
)
|
||
|
self._save_index()
|
||
|
except Exception:
|
||
|
# Tell the user so they can investigate these files
|
||
|
logger.exception(f"Processing files {files}")
|
||
|
finally:
|
||
|
# Clearing work, even on exception, maintains a clean state.
|
||
|
nodes.clear()
|
||
|
documents.clear()
|
||
|
files.clear()
|
||
|
|
||
|
def _write_nodes(self) -> None:
|
||
|
# Save nodes to index. I/O intensive.
|
||
|
node_stack: list[BaseNode] = []
|
||
|
doc_stack: list[Document] = []
|
||
|
file_stack: list[str] = []
|
||
|
while True:
|
||
|
try:
|
||
|
cmd, file_name, documents, nodes = self.node_q.get(block=True)
|
||
|
if cmd in ("flush", "quit"):
|
||
|
if file_stack:
|
||
|
self._save_docs(file_stack, doc_stack, node_stack)
|
||
|
if cmd == "quit":
|
||
|
break
|
||
|
elif cmd == "process":
|
||
|
node_stack.extend(nodes) # type: ignore[arg-type]
|
||
|
doc_stack.extend(documents) # type: ignore[arg-type]
|
||
|
file_stack.append(file_name) # type: ignore[arg-type]
|
||
|
# Constant saving is heavy on I/O - accumulate to a threshold
|
||
|
if len(node_stack) >= self.NODE_FLUSH_COUNT:
|
||
|
self._save_docs(file_stack, doc_stack, node_stack)
|
||
|
finally:
|
||
|
self.node_q.task_done()
|
||
|
|
||
|
def _flush(self) -> None:
|
||
|
self.doc_q.put(("flush", None, None))
|
||
|
self.doc_q.join()
|
||
|
self.node_q.put(("flush", None, None, None))
|
||
|
self.node_q.join()
|
||
|
|
||
|
def ingest(self, file_name: str, file_data: Path) -> list[Document]:
|
||
|
documents = IngestionHelper.transform_file_into_documents(file_name, file_data)
|
||
|
self.doc_q.put(("process", file_name, documents))
|
||
|
self._flush()
|
||
|
return documents
|
||
|
|
||
|
def bulk_ingest(self, files: list[tuple[str, Path]]) -> list[Document]:
|
||
|
docs = []
|
||
|
for file_name, file_data in eta(files):
|
||
|
try:
|
||
|
documents = IngestionHelper.transform_file_into_documents(
|
||
|
file_name, file_data
|
||
|
)
|
||
|
self.doc_q.put(("process", file_name, documents))
|
||
|
docs.extend(documents)
|
||
|
except Exception:
|
||
|
logger.exception(f"Skipping {file_data.name}")
|
||
|
self._flush()
|
||
|
return docs
|
||
|
|
||
|
|
||
|
def get_ingestion_component(
|
||
|
storage_context: StorageContext,
|
||
|
embed_model: EmbedType,
|
||
|
transformations: list[TransformComponent],
|
||
|
settings: Settings,
|
||
|
) -> BaseIngestComponent:
|
||
|
"""Get the ingestion component for the given configuration."""
|
||
|
ingest_mode = settings.embedding.ingest_mode
|
||
|
if ingest_mode == "batch":
|
||
|
return BatchIngestComponent(
|
||
|
storage_context=storage_context,
|
||
|
embed_model=embed_model,
|
||
|
transformations=transformations,
|
||
|
count_workers=settings.embedding.count_workers,
|
||
|
)
|
||
|
elif ingest_mode == "parallel":
|
||
|
return ParallelizedIngestComponent(
|
||
|
storage_context=storage_context,
|
||
|
embed_model=embed_model,
|
||
|
transformations=transformations,
|
||
|
count_workers=settings.embedding.count_workers,
|
||
|
)
|
||
|
elif ingest_mode == "pipeline":
|
||
|
return PipelineIngestComponent(
|
||
|
storage_context=storage_context,
|
||
|
embed_model=embed_model,
|
||
|
transformations=transformations,
|
||
|
count_workers=settings.embedding.count_workers,
|
||
|
)
|
||
|
else:
|
||
|
return SimpleIngestComponent(
|
||
|
storage_context=storage_context,
|
||
|
embed_model=embed_model,
|
||
|
transformations=transformations,
|
||
|
)
|