2024-09-27 16:52:16 +00:00
|
|
|
# 🔒 PrivateGPT 📑
|
|
|
|
|
|
|
|
[![Tests](https://github.com/zylon-ai/private-gpt/actions/workflows/tests.yml/badge.svg)](https://github.com/zylon-ai/private-gpt/actions/workflows/tests.yml?query=branch%3Amain)
|
|
|
|
[![Website](https://img.shields.io/website?up_message=check%20it&down_message=down&url=https%3A%2F%2Fdocs.privategpt.dev%2F&label=Documentation)](https://docs.privategpt.dev/)
|
|
|
|
[![Discord](https://img.shields.io/discord/1164200432894234644?logo=discord&label=PrivateGPT)](https://discord.gg/bK6mRVpErU)
|
|
|
|
[![X (formerly Twitter) Follow](https://img.shields.io/twitter/follow/ZylonPrivateGPT)](https://twitter.com/ZylonPrivateGPT)
|
|
|
|
|
|
|
|
![Gradio UI](/fern/docs/assets/ui.png?raw=true)
|
|
|
|
|
|
|
|
PrivateGPT is a production-ready AI project that allows you to ask questions about your documents using the power
|
|
|
|
of Large Language Models (LLMs), even in scenarios without an Internet connection. 100% private, no data leaves your
|
|
|
|
execution environment at any point.
|
|
|
|
|
|
|
|
>[!TIP]
|
|
|
|
> If you are looking for an **enterprise-ready, fully private AI workspace**
|
|
|
|
> check out [Zylon's website](https://zylon.ai) or [request a demo](https://cal.com/zylon/demo?source=pgpt-readme).
|
|
|
|
> Crafted by the team behind PrivateGPT, Zylon is a best-in-class AI collaborative
|
|
|
|
> workspace that can be easily deployed on-premise (data center, bare metal...) or in your private cloud (AWS, GCP, Azure...).
|
|
|
|
|
|
|
|
The project provides an API offering all the primitives required to build private, context-aware AI applications.
|
|
|
|
It follows and extends the [OpenAI API standard](https://openai.com/blog/openai-api),
|
|
|
|
and supports both normal and streaming responses.
|
|
|
|
|
|
|
|
The API is divided into two logical blocks:
|
|
|
|
|
|
|
|
**High-level API**, which abstracts all the complexity of a RAG (Retrieval Augmented Generation)
|
|
|
|
pipeline implementation:
|
|
|
|
- Ingestion of documents: internally managing document parsing,
|
|
|
|
splitting, metadata extraction, embedding generation and storage.
|
|
|
|
- Chat & Completions using context from ingested documents:
|
|
|
|
abstracting the retrieval of context, the prompt engineering and the response generation.
|
|
|
|
|
|
|
|
**Low-level API**, which allows advanced users to implement their own complex pipelines:
|
|
|
|
- Embeddings generation: based on a piece of text.
|
|
|
|
- Contextual chunks retrieval: given a query, returns the most relevant chunks of text from the ingested documents.
|
|
|
|
|
|
|
|
In addition to this, a working [Gradio UI](https://www.gradio.app/)
|
|
|
|
client is provided to test the API, together with a set of useful tools such as bulk model
|
|
|
|
download script, ingestion script, documents folder watch, etc.
|
|
|
|
|
|
|
|
## 🎞️ Overview
|
|
|
|
>[!WARNING]
|
|
|
|
> This README is not updated as frequently as the [documentation](https://docs.privategpt.dev/).
|
|
|
|
> Please check it out for the latest updates!
|
|
|
|
|
|
|
|
### Motivation behind PrivateGPT
|
|
|
|
Generative AI is a game changer for our society, but adoption in companies of all sizes and data-sensitive
|
|
|
|
domains like healthcare or legal is limited by a clear concern: **privacy**.
|
|
|
|
Not being able to ensure that your data is fully under your control when using third-party AI tools
|
|
|
|
is a risk those industries cannot take.
|
|
|
|
|
|
|
|
### Primordial version
|
|
|
|
The first version of PrivateGPT was launched in May 2023 as a novel approach to address the privacy
|
|
|
|
concerns by using LLMs in a complete offline way.
|
|
|
|
|
|
|
|
That version, which rapidly became a go-to project for privacy-sensitive setups and served as the seed
|
|
|
|
for thousands of local-focused generative AI projects, was the foundation of what PrivateGPT is becoming nowadays;
|
|
|
|
thus a simpler and more educational implementation to understand the basic concepts required
|
|
|
|
to build a fully local -and therefore, private- chatGPT-like tool.
|
|
|
|
|
|
|
|
If you want to keep experimenting with it, we have saved it in the
|
|
|
|
[primordial branch](https://github.com/zylon-ai/private-gpt/tree/primordial) of the project.
|
|
|
|
|
|
|
|
> It is strongly recommended to do a clean clone and install of this new version of
|
|
|
|
PrivateGPT if you come from the previous, primordial version.
|
|
|
|
|
|
|
|
### Present and Future of PrivateGPT
|
|
|
|
PrivateGPT is now evolving towards becoming a gateway to generative AI models and primitives, including
|
|
|
|
completions, document ingestion, RAG pipelines and other low-level building blocks.
|
|
|
|
We want to make it easier for any developer to build AI applications and experiences, as well as provide
|
|
|
|
a suitable extensive architecture for the community to keep contributing.
|
|
|
|
|
|
|
|
Stay tuned to our [releases](https://github.com/zylon-ai/private-gpt/releases) to check out all the new features and changes included.
|
|
|
|
|
|
|
|
## 📄 Documentation
|
|
|
|
Full documentation on installation, dependencies, configuration, running the server, deployment options,
|
|
|
|
ingesting local documents, API details and UI features can be found here: https://docs.privategpt.dev/
|
|
|
|
|
|
|
|
## 🧩 Architecture
|
|
|
|
Conceptually, PrivateGPT is an API that wraps a RAG pipeline and exposes its
|
|
|
|
primitives.
|
|
|
|
* The API is built using [FastAPI](https://fastapi.tiangolo.com/) and follows
|
|
|
|
[OpenAI's API scheme](https://platform.openai.com/docs/api-reference).
|
|
|
|
* The RAG pipeline is based on [LlamaIndex](https://www.llamaindex.ai/).
|
|
|
|
|
|
|
|
The design of PrivateGPT allows to easily extend and adapt both the API and the
|
|
|
|
RAG implementation. Some key architectural decisions are:
|
|
|
|
* Dependency Injection, decoupling the different components and layers.
|
|
|
|
* Usage of LlamaIndex abstractions such as `LLM`, `BaseEmbedding` or `VectorStore`,
|
|
|
|
making it immediate to change the actual implementations of those abstractions.
|
|
|
|
* Simplicity, adding as few layers and new abstractions as possible.
|
|
|
|
* Ready to use, providing a full implementation of the API and RAG
|
|
|
|
pipeline.
|
|
|
|
|
|
|
|
Main building blocks:
|
|
|
|
* APIs are defined in `private_gpt:server:<api>`. Each package contains an
|
|
|
|
`<api>_router.py` (FastAPI layer) and an `<api>_service.py` (the
|
|
|
|
service implementation). Each *Service* uses LlamaIndex base abstractions instead
|
|
|
|
of specific implementations,
|
|
|
|
decoupling the actual implementation from its usage.
|
|
|
|
* Components are placed in
|
|
|
|
`private_gpt:components:<component>`. Each *Component* is in charge of providing
|
|
|
|
actual implementations to the base abstractions used in the Services - for example
|
|
|
|
`LLMComponent` is in charge of providing an actual implementation of an `LLM`
|
|
|
|
(for example `LlamaCPP` or `OpenAI`).
|
|
|
|
|
|
|
|
## 💡 Contributing
|
|
|
|
Contributions are welcomed! To ensure code quality we have enabled several format and
|
|
|
|
typing checks, just run `make check` before committing to make sure your code is ok.
|
|
|
|
Remember to test your code! You'll find a tests folder with helpers, and you can run
|
|
|
|
tests using `make test` command.
|
|
|
|
|
|
|
|
Don't know what to contribute? Here is the public
|
|
|
|
[Project Board](https://github.com/users/imartinez/projects/3) with several ideas.
|
|
|
|
|
|
|
|
Head over to Discord
|
|
|
|
#contributors channel and ask for write permissions on that GitHub project.
|
|
|
|
|
|
|
|
## 💬 Community
|
|
|
|
Join the conversation around PrivateGPT on our:
|
|
|
|
- [Twitter (aka X)](https://twitter.com/PrivateGPT_AI)
|
|
|
|
- [Discord](https://discord.gg/bK6mRVpErU)
|
|
|
|
|
|
|
|
## 📖 Citation
|
|
|
|
If you use PrivateGPT in a paper, check out the [Citation file](CITATION.cff) for the correct citation.
|
|
|
|
You can also use the "Cite this repository" button in this repo to get the citation in different formats.
|
|
|
|
|
|
|
|
Here are a couple of examples:
|
|
|
|
|
|
|
|
#### BibTeX
|
|
|
|
```bibtex
|
|
|
|
@software{Zylon_PrivateGPT_2023,
|
|
|
|
author = {Zylon by PrivateGPT},
|
|
|
|
license = {Apache-2.0},
|
|
|
|
month = may,
|
|
|
|
title = {{PrivateGPT}},
|
|
|
|
url = {https://github.com/zylon-ai/private-gpt},
|
|
|
|
year = {2023}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
#### APA
|
|
|
|
```
|
|
|
|
Zylon by PrivateGPT (2023). PrivateGPT [Computer software]. https://github.com/zylon-ai/private-gpt
|
|
|
|
```
|
|
|
|
|
|
|
|
## 🤗 Partners & Supporters
|
|
|
|
PrivateGPT is actively supported by the teams behind:
|
|
|
|
* [Qdrant](https://qdrant.tech/), providing the default vector database
|
|
|
|
* [Fern](https://buildwithfern.com/), providing Documentation and SDKs
|
|
|
|
* [LlamaIndex](https://www.llamaindex.ai/), providing the base RAG framework and abstractions
|
|
|
|
|
|
|
|
This project has been strongly influenced and supported by other amazing projects like
|
|
|
|
[LangChain](https://github.com/hwchase17/langchain),
|
|
|
|
[GPT4All](https://github.com/nomic-ai/gpt4all),
|
|
|
|
[LlamaCpp](https://github.com/ggerganov/llama.cpp),
|
|
|
|
[Chroma](https://www.trychroma.com/)
|
|
|
|
and [SentenceTransformers](https://www.sbert.net/).
|