EMG_Biometrics_2021/Present_data.py
2021-06-28 09:59:01 +02:00

81 lines
2.5 KiB
Python

from Handle_emg_data import *
from Signal_prep import *
# PLOT FUNCTIONS:
# Plots DataFrame objects
def plot_df(df:DataFrame):
lines = df.plot.line(x='timestamp')
plt.show()
# Plots ndarrays after transformations
def plot_arrays(N, N_name, y, y_name):
plt.plot(N, np.abs(y))
plt.show()
def plot_compare_two_df(df_old, old_name, df_new, new_name):
x = get_xory_from_df('x', df_old)
y1 = get_xory_from_df('y', df_old)
y2 = get_xory_from_df('y', df_new)
figure, axis = plt.subplots(1, 2)
axis[0].plot(x, y1)
axis[0].set_title(old_name)
axis[1].plot(x, y2)
axis[1].set_title(new_name)
plt.show()
# DATA FUNCTIONS:
# The CSV_handler takes in data_type, but only for visuals.
# E.g. handler = CSV_handler('soft')
# Loads in data. Choose data_type: hard, hardPP, soft og softPP as str. Returns None
def load_data(csv_handler:CSV_handler, data_type):
switcher = {
'hard': csv_handler.load_hard_original_emg_data(),
'hardPP':csv_handler.load_hard_PP_emg_data(),
'soft':csv_handler.load_soft_original_emg_data(),
'softPP':csv_handler.load_soft_PP_emg_data(),
}
return switcher.get(data_type)
# Retrieved data. Send in loaded csv_handler and data detailes you want. Returns DataFrame
def get_data(csv_handler:CSV_handler, subject_nr, which_arm, session, emg_nr):
data_frame = csv_handler.get_df_from_data_dict(subject_nr, which_arm, session, emg_nr)
return data_frame
#Takes in handler and detailes to denoise. Returns arrays and df
def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, round, emg_nr):
df = handler.get_df_from_data_dict(subject_nr, which_arm, round, emg_nr)
N = get_xory_from_df('x', df)
N_trans, cA, cD = wavelet_db4(df)
cA_filt, cD_filt = soft_threshold_filter(cA, cD)
y_values = inverse_wavelet(df, cA_filt, cD_filt)
df_new = Handler.make_df_from_xandy(N, y_values, emg_nr)
return df_new
# MAIN:
def main():
csv_handler = CSV_handler('hard')
load_data(csv_handler, 'hard')
data_frame = get_data(csv_handler, 1, 'left', 1, 1)
N_trans, cA, cD = wavelet_db4(data_frame)
data_frame_freq = make_df_from_xandy(N_trans, cA, 1)
cA_filt, cD_filt = soft_threshold_filter(cA, cD)
data_frame_freq_filt = make_df_from_xandy(N_trans, cD_filt, 1)
plot_compare_two_df(data_frame_freq, 'Original data', data_frame_freq_filt, 'Analyzed data')
return None
main()