EMG_Biometrics_2021/Signal_prep.py
2021-07-02 10:26:05 +02:00

58 lines
1.7 KiB
Python

import numpy as np
from pandas.core.frame import DataFrame
from scipy.fft import fft, fftfreq
import pywt
import sys
from Handle_emg_data import *
# Normalizes a ndarray of a signal to the scale of int16(32767)
def normalize_wave(y_values):
y = np.int16((y_values / y_values.max()) * 32767)
return y
# Takes the FFT of a DataFrame object
def fft_of_df(df:DataFrame):
y_values = get_xory_from_df('y', df)
N = y_values.size
norm = normalize_wave(y_values)
N_trans = fftfreq(N, 1 / get_samplerate(df))
y_f = fft(norm)
return N_trans, y_f
# Removes noise with db4 wavelet function
def wavelet_db4(df:DataFrame):
y_values = get_xory_from_df('y', df)
#y_values = normalize_wave(y_values)
wavelet = pywt.Wavelet('db4')
cA, cD = pywt.dwt(y_values, wavelet)
N_trans = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2))))
return N_trans, cA, cD
# soft filtering of wavelet trans with the a 1/2 std filter
def soft_threshold_filter(cA, cD):
cA_filt = pywt.threshold(cA, np.std(cA)/2)
cD_filt = pywt.threshold(cD, np.std(cD)/2)
return cA_filt, cD_filt
# Inverse dwt for brining denoise signal back to the time domainfi
def inverse_wavelet(df, cA_filt, cD_filt):
wavelet = pywt.Wavelet('db4')
y_new_values = pywt.idwt(cA_filt, cD_filt, wavelet)
new_len = len(y_new_values)
old_len = len(get_xory_from_df('y', df))
if new_len > old_len:
while new_len > old_len:
y_new_values = y_new_values[:-1]
new_len = len(y_new_values)
old_len = len(get_xory_from_df('y', df))
return y_new_values
# NOT FINISHED
def cepstrum(df:DataFrame):
N = get_xory_from_df('x', df)
y = get_xory_from_df('y', df)
return None