EMG_Biometrics_2021/Neural_Network_Analysis.py
2021-07-02 14:46:31 +02:00

61 lines
1.5 KiB
Python

import json
import numpy as np
from sklearn.model_selection import train_test_split
import tensorflow as tf
import tf.keras as keras
from pathlib import Path
# path to json file that stores MFCCs and genre labels for each processed segment
DATA_PATH = str(Path.cwd()) + "mfcc_data.json"
def load_data(data_path):
with open(data_path, "r") as fp:
data = json.load(fp)
# convert lists to numpy arrays
X = np.array(data["mfcc"])
y = np.array(data["labels"])
print("Data succesfully loaded!")
return X, y
if __name__ == "__main__":
# load data
X, y = load_data(DATA_PATH)
# create train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# build network topology
model = keras.Sequential([
# input layer
keras.layers.Flatten(input_shape=(X.shape[1], X.shape[2])),
# 1st dense layer
keras.layers.Dense(512, activation='relu'),
# 2nd dense layer
keras.layers.Dense(256, activation='relu'),
# 3rd dense layer
keras.layers.Dense(64, activation='relu'),
# output layer
keras.layers.Dense(10, activation='softmax')
])
# compile model
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimiser,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary()
# train model
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=32, epochs=50)