EMG_Biometrics_2021/Test_functions.py
2021-06-24 15:48:54 +02:00

52 lines
1.7 KiB
Python

from Handle_emg_data import CSV_handler, get_min_max_timestamp
import matplotlib.pyplot as plt
import Signal_prep
def test_df_extraction(emg_nr):
handler = CSV_handler()
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
subject1_left_emg1 = handler.get_time_emg_table(file, emg_nr)
print(subject1_left_emg1.head)
return subject1_left_emg1, emg_nr
def test_load_func():
test_dict = Signal_prep.load_user_emg_data()
subject2_container = test_dict[2]
print(subject2_container.data_dict['left'][1])
def test_min_max_func():
handler = CSV_handler()
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
df = handler.get_time_emg_table(file, 1)
min, max = get_min_max_timestamp(df)
print(min)
print(max)
def test_fft_prep():
handler = CSV_handler()
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
df = handler.get_time_emg_table(file, 1)
x, y, d = Signal_prep.prep_df_for_trans(df)
print(x)
print(y)
def test_plot_wavelet_both_ways():
handler = CSV_handler()
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
df = handler.get_time_emg_table(file, 1)
N = handler.get_xory_from_df('x', df)
#plot_df(df)
#print(len(N))
#print(len(get_xory_from_df('y', df)))
x, cA, cD = handler.wavelet_db4_denoising(df)
#plot_arrays(x, cA)
#print(len(cA))
cA_filt, cD_filt = soft_threshold_filter(cA, cD)
#plot_arrays(x, cA_filt)
#print(len(cA_filt))
y_new_values = handler.inverse_wavelet(df, cA, cD)
#print(len(y_new_values))
handler.plot_arrays(N, y_new_values)