from Handle_emg_data import * import matplotlib.pyplot as plt from Signal_prep import * def test_df_extraction(emg_nr): handler = CSV_handler() file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv" subject1_left_emg1 = handler.get_time_emg_table(file, emg_nr) print(subject1_left_emg1.head) return subject1_left_emg1, emg_nr def test_load_func(): test_dict = load_user_emg_data() subject2_container = test_dict[2] print(subject2_container.data_dict['left'][1]) def test_min_max_func(): handler = CSV_handler() file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv" df = handler.get_time_emg_table(file, 1) min, max = get_min_max_timestamp(df) print(min) print(max) def test_fft_prep(): handler = CSV_handler() file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv" df = handler.get_time_emg_table(file, 1) def test_plot_wavelet_both_ways(): handler = CSV_handler() file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv" df = handler.get_time_emg_table(file, 1) N = get_xory_from_df('x', df) plot_df(df) #print(len(N)) #print(len(get_xory_from_df('y', df))) x, cA, cD = wavelet_db4_denoising(df) plot_arrays(x, cA) #print(len(cA)) cA_filt, cD_filt = soft_threshold_filter(cA, cD) plot_arrays(x, cA_filt) #print(len(cA_filt)) y_new_values = inverse_wavelet(df, cA_filt, cD_filt) #print(len(y_new_values)) plot_arrays(N, y_new_values) test_plot_wavelet_both_ways()