import json from python_speech_features.python_speech_features.base import mfcc import numpy as np from sklearn.model_selection import train_test_split import tensorflow as tf import tensorflow.keras as keras from pathlib import Path import pandas as pd import matplotlib.pyplot as plt # path to json file that stores MFCCs and subject labels for each processed sample DATA_PATH = str(Path.cwd()) + "/mfcc_data.json" def load_data(data_path): with open(data_path, "r") as fp: data = json.load(fp) # convert lists to numpy arraysls X = np.array(data['mfcc']) X = X.reshape(X.shape[0], 1, X.shape[1]) print(X.shape) y = np.array(data["labels"]) y = y.reshape(y.shape[0], 1) print(y.shape) print("Data succesfully loaded!") return X, y def plot_history(history): """Plots accuracy/loss for training/validation set as a function of the epochs :param history: Training history of model :return: """ fig, axs = plt.subplots(2) # create accuracy sublpot axs[0].plot(history.history["accuracy"], label="train accuracy") axs[0].plot(history.history["val_accuracy"], label="test accuracy") axs[0].set_ylabel("Accuracy") axs[0].legend(loc="lower right") axs[0].set_title("Accuracy eval") # create error sublpot axs[1].plot(history.history["loss"], label="train error") axs[1].plot(history.history["val_loss"], label="test error") axs[1].set_ylabel("Error") axs[1].set_xlabel("Epoch") axs[1].legend(loc="upper right") axs[1].set_title("Error eval") plt.show() def prepare_datasets(test_size=0.25, validation_size=0.2): """Loads data and splits it into train, validation and test sets. :param test_size (float): Value in [0, 1] indicating percentage of data set to allocate to test split :param validation_size (float): Value in [0, 1] indicating percentage of train set to allocate to validation split :return X_train (ndarray): Input training set :return X_validation (ndarray): Input validation set :return X_test (ndarray): Input test set :return y_train (ndarray): Target training set :return y_validation (ndarray): Target validation set :return y_test (ndarray): Target test set """ # load data X, y = load_data(DATA_PATH) # create train, validation and test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size) return X_train, X_validation, X_test, y_train, y_validation, y_test def build_model(input_shape, nr_classes=5): """Generates RNN-LSTM model :param input_shape (tuple): Shape of input set :return model: RNN-LSTM model """ # build network topology model = keras.Sequential() # 2 LSTM layers model.add(keras.layers.LSTM(64, input_shape=input_shape, return_sequences=True)) model.add(keras.layers.LSTM(64)) # dense layer model.add(keras.layers.Dense(64, activation='relu')) model.add(keras.layers.Dropout(0.3)) # output layer model.add(keras.layers.Dense(nr_classes, activation='softmax')) return model if __name__ == "__main__": # get train, validation, test splits X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2) print(X_train.shape[1], X_train.shape[2]) # create network input_shape = (X_train.shape[1], X_train.shape[2]) # 1, 208 model = build_model(input_shape) # compile model optimiser = keras.optimizers.Adam(learning_rate=0.0001) model.compile(optimizer=optimiser, loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() # train model history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=128, epochs=30) # plot accuracy/error for training and validation plot_history(history) # evaluate model on test set test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2) print('\nTest accuracy:', test_acc)