import numpy as np from pandas.core.frame import DataFrame from scipy.fft import fft, fftfreq import pywt import sys import Handle_emg_data as Handler sys.path.insert(0, '/Users/Markus/Prosjekter git/Slovakia 2021/python_speech_features/python_speech_features') from python_speech_features.python_speech_features import * # Takes in a df and outputs np arrays for x and y values def get_xory_from_df(x_or_y, df:DataFrame): swither = { 'x': df.iloc[:,0].to_numpy(), 'y': df.iloc[:,1].to_numpy() } return swither.get(x_or_y, 0) # Normalizes a ndarray of a signal to the scale of int16(32767) def normalize_wave(y_values): y = np.int16((y_values / y_values.max()) * 32767) return y # Takes the FFT of a DataFrame object def fft_of_df(df:DataFrame): y_values = get_xory_from_df('y', df) N = y_values.size norm = normalize_wave(y_values) N_trans = fftfreq(N, 1 / Handler.get_samplerate(df)) y_f = fft(norm) return N_trans, y_f # Removes noise with db4 wavelet function def wavelet_db4(df:DataFrame): y_values = get_xory_from_df('y', df) #y_values = normalize_wave(y_values) wavelet = pywt.Wavelet('db4') cA, cD = pywt.dwt(y_values, wavelet) N_trans = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2)))) return N_trans, cA, cD # soft filtering of wavelet trans with the a 1/2 std filter def soft_threshold_filter(cA, cD): cA_filt = pywt.threshold(cA, np.std(cA)/2) cD_filt = pywt.threshold(cD, np.std(cD)/2) return cA_filt, cD_filt # Inverse dwt for brining denoise signal back to the time domainfi def inverse_wavelet(df, cA_filt, cD_filt): wavelet = pywt.Wavelet('db4') y_new_values = pywt.idwt(cA_filt, cD_filt, wavelet) new_len = len(y_new_values) old_len = len(get_xory_from_df('y', df)) if new_len > old_len: while new_len > old_len: y_new_values = y_new_values[:-1] new_len = len(y_new_values) old_len = len(get_xory_from_df('y', df)) return y_new_values # NOT FINISHED def cepstrum(df:DataFrame): N = get_xory_from_df('x', df) y = get_xory_from_df('y', df) return None