import json from keras import callbacks from psf_lib.python_speech_features.python_speech_features.base import mfcc import numpy as np from sklearn.model_selection import train_test_split import tensorflow as tf import tensorflow.keras as keras from keras import backend as K from keras.regularizers import l2 from keras.callbacks import Callback, CSVLogger, ModelCheckpoint from pathlib import Path import pandas as pd import matplotlib.pyplot as plt import statistics import csv # Path to json file that stores MFCCs and subject labels for each processed sample DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json" # Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1) # Input: JSON path # Ouput: X(mfcc data), y(labels), session_lengths def load_data_from_json(data_path, nr_classes): with open(data_path, "r") as fp: data = json.load(fp) # Convert lists to numpy arrays and reshapes them X = np.array(data['mfcc']) X = X.reshape(X.shape[0], 1, X.shape[1]) y = np.array(data["labels"]) y = keras.utils.to_categorical(y, nr_classes) session_lengths = np.array(data['session_lengths']) print("Data succesfully loaded!") return X, y, session_lengths # Plots the training history with two subplots. First training and test accuracy, and then # loss with respect to epochs # Input: History(from model.fit(...)) # Ouput: None -> plot def plot_train_history(history, val_data=False): fig, axs = plt.subplots(2) # create accuracy sublpot axs[0].plot(history.history["accuracy"], label="train accuracy") if val_data: axs[0].plot(history.history["val_accuracy"], label="validation accuracy") axs[0].set_ylabel("Accuracy") axs[0].legend(loc="lower right") axs[0].set_title("Accuracy eval") # create error sublpot axs[1].plot(history.history["loss"], label="train error") if val_data: axs[1].plot(history.history["val_loss"], label="validation error") axs[1].set_ylabel("Error") axs[1].set_xlabel("Epoch") axs[1].legend(loc="upper right") axs[1].set_title("Error eval") plt.show() # Takes in data and labels, and splits it into train, validation and test sets by percentage # Input: Data, labels, whether to shuffle, % validatiion, % test # Ouput: X_train, X_validation, X_test, y_train, y_validation, y_test def prepare_datasets_percentsplit(X, y, shuffle_vars, validation_size=0.2, test_size=0.25,): # Create train, validation and test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, shuffle=shuffle_vars) X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size, shuffle=shuffle_vars) return X_train, X_validation, X_test, y_train, y_validation, y_test # Takes in data, labels, and session_lengths and splits it into train and test sets by session_index # Input: Data, labels, session_lengths, test_session_index # Ouput: X_train, X_test, y_train, y_test def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_subjects=5): session_lengths = session_lengths.tolist() subject_starting_index = 0 start_test_index = subject_starting_index + sum(session_lengths[0][:test_session_index-1]) end_test_index = start_test_index + session_lengths[0][test_session_index-1] end_subject_index = subject_starting_index + sum(session_lengths[0]) # Testing to check correctly slicing ''' print(session_lengths[0], 'Sum:', sum(session_lengths[0])) print('Subject start:', subject_starting_index) print('Test start:', start_test_index) print('Test end:', end_test_index) print('Subject end:', end_subject_index, '\n -------') ''' if start_test_index == subject_starting_index: X_test = X[start_test_index:end_test_index] y_test = y[start_test_index:end_test_index] X_train = X[end_test_index:end_subject_index] y_train = y[end_test_index:end_subject_index] elif end_test_index == end_subject_index: #print(X[subject_starting_index:start_test_index].shape) X_train = X[subject_starting_index:start_test_index] y_train = y[subject_starting_index:start_test_index] X_test = X[start_test_index:end_test_index] #print(X[start_test_index:end_test_index].shape, '\n ---') y_test = y[start_test_index:end_test_index] else: X_train = X[subject_starting_index:start_test_index] y_train = y[subject_starting_index:start_test_index] X_test = X[start_test_index:end_test_index] y_test = y[start_test_index:end_test_index] X_train = np.concatenate((X_train, X[end_test_index:end_subject_index])) y_train = np.concatenate((y_train, y[end_test_index:end_subject_index])) #print(X_train.shape, '\n -------') subject_starting_index = max(end_subject_index, end_test_index) for i in range(1, nr_subjects): start_test_index = subject_starting_index + sum(session_lengths[i][:test_session_index-1]) end_test_index = start_test_index + session_lengths[i][test_session_index-1] end_subject_index = subject_starting_index + sum(session_lengths[i]) # Testing to check correctly slicing ''' print(session_lengths[i], 'Sum:', sum(session_lengths[i])) print('Subject start:', subject_starting_index) print('Test start:', start_test_index) print('Test end:', end_test_index) print('Subject end:', end_subject_index, '\n -------') ''' if start_test_index == subject_starting_index: X_test = np.concatenate((X_test, X[start_test_index:end_test_index])) y_test = np.concatenate((y_test, y[start_test_index:end_test_index])) X_train = np.concatenate((X_train, X[end_test_index:end_subject_index])) y_train = np.concatenate((y_train, y[end_test_index:end_subject_index])) elif end_test_index == end_subject_index: #print(X[subject_starting_index:start_test_index].shape) X_train = np.concatenate((X_train, X[subject_starting_index:start_test_index])) y_train = np.concatenate((y_train, y[subject_starting_index:start_test_index])) #print(X[start_test_index:end_test_index].shape, '\n ---') X_test = np.concatenate((X_test, X[start_test_index:end_test_index])) y_test = np.concatenate((y_test, y[start_test_index:end_test_index])) else: X_train = np.concatenate((X_train, X[subject_starting_index:start_test_index])) y_train = np.concatenate((y_train, y[subject_starting_index:start_test_index])) X_test = np.concatenate((X_test, X[start_test_index:end_test_index])) y_test = np.concatenate((y_test, y[start_test_index:end_test_index])) X_train = np.concatenate((X_train, X[end_test_index:end_subject_index])) y_train = np.concatenate((y_train, y[end_test_index:end_subject_index])) #print(X_train.shape, '\n -------') subject_starting_index = max(end_subject_index, end_test_index) return X_train, X_test, y_train, y_test # Trains the model # Input: Keras.model, batch_size, nr epochs, training, and validation data # Ouput: History def train( model, X_train, y_train, verbose, batch_size=64, epochs=30, X_validation=None, y_validation=None): optimiser = keras.optimizers.Adam(learning_rate=0.0001) model.compile(optimizer=optimiser, loss='categorical_crossentropy', metrics=['accuracy']) #csv_path = str(Path.cwd()) + '/logs/{}/{}_train_log.csv'.format(MODEL_NAME, MODEL_NAME) #csv_logger = CSVLogger(csv_path, append=False) if X_validation != None: history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=batch_size, epochs=epochs, verbose=verbose) else: history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=verbose) return history # Gives nr of datapoints for chosen session # Input: session_lengths 2d-list, session_nr, nr of subjects # Ouput: int(datapoints) def get_nr_in_session(session_lengths:list, session_nr, nr_subjects=5): summ = 0 for i in range(nr_subjects): summ += session_lengths[i][session_nr-1] return summ # Prints session and training data # Input: None # Ouput: None -> print def print_session_train_data(X_train, X_test, y_train, y_test, session_lengths, session_nr): print(X_train.size) print(X_train.shape) print(X_test.shape) print(y_train.shape) print(y_test.shape) print('Datapoints in session ' + str(session_nr) + ':', get_nr_in_session(session_lengths, session_nr)) print('Should be remaining:', 2806 - get_nr_in_session(session_lengths, session_nr)) # Reshapes training og test data into batches NOT RELEVANT? # Input: training, test data (and validation), batch_size # Ouput: training, test data (and validation) def batch_formatting(X_train, X_test, y_train, y_test, batch_size=64, nr_classes=5, X_validation=None, y_validation=None): train_splits = X_train.shape[0] // batch_size train_rest = X_train.shape[0] % batch_size test_splits = X_test.shape[0] // batch_size test_rest = X_test.shape[0] % batch_size X_train = X_train[:-train_rest] y_train = y_train[:-train_rest] X_test = X_test[:-test_rest] y_test = y_test[:-test_rest] X_train_batch = np.reshape(X_train, (batch_size, train_splits, 208)) y_train_batch = np.reshape(y_train, (batch_size, train_splits, nr_classes)) X_test_batch = np.reshape(X_test, (batch_size, test_splits, 208)) y_test_batch = np.reshape(y_test, (batch_size, test_splits, nr_classes)) if X_validation != None: val_splits = X_validation.shape[0] // batch_size val_rest = X_validation.shape[0] % batch_size X_validation = X_validation[:-val_rest] y_validation = y_validation[:-val_rest] X_val_batch = np.reshape(X_validation, (batch_size, val_splits, 208)) y_val_batch = np.reshape(y_validation, (batch_size, val_splits)) return X_train_batch, X_test_batch, y_train_batch, y_test_batch, X_val_batch, y_val_batch return X_train_batch, X_test_batch, y_train_batch, y_test_batch # Retrieves data sets for each session as test set and evalutes. DOES USE prediction_csv_logger as default # the average of networks trained om them # Input: raw data, session_lengths list, total nr of sessions, batch_size, and nr of epochs # Ouput: tuple(cross validation average, list(result for each dataset(len=nr_sessions))) def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, log_to_csv=True, batch_size=64, epochs=30): session_training_results = [] for i in range(nr_sessions): X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i) # Model: if model_name == 'LSTM': model = LSTM(input_shape=(1, 208)) elif model_name == 'GRU': model = GRU(input_shape=(1, 208)) elif model_name == 'CNN_1D': X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 208, 1)) X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 208, 1)) model = CNN_1D(input_shape=(208, 1)) elif model_name == 'FFN': model = FFN(input_shape=(1, 208)) else: raise Exception('Model not found') #model.summary() train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs) test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2) session_training_results.append(test_acc) if log_to_csv: prediction_csv_logger(X_test_session, y_test_session, model_name, model, i) del model K.clear_session() #print('Session', i, 'as test data gives accuracy:', test_acc) average_result = statistics.mean((session_training_results)) return average_result, session_training_results # Retrieves data sets for each session as train set and evalutes on the others. # the average of networks trained om them # Input: raw data, session_lengths list, total nr of sessions, batch_size, and nr of epochs # Ouput: tuple(cross validation average, list(result for each dataset(len=nr_sessions))) def inverse_session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, log_to_csv=True, batch_size=64, epochs=30): session_training_results = [] for i in range(nr_sessions): X_test_session, X_train_session, y_test_session, y_train_session = prepare_datasets_sessions(X, y, session_lengths, i) # Model: if model_name == 'LSTM': model = LSTM(input_shape=(1, 208)) elif model_name == 'GRU': model = GRU(input_shape=(1, 208)) elif model_name == 'CNN_1D': X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 208, 1)) X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 208, 1)) model = CNN_1D(input_shape=(208, 1)) elif model_name == 'FFN': model = FFN(input_shape=(1, 208)) else: raise Exception('Model not found') train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs) test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=0) session_training_results.append(test_acc) if log_to_csv: custom_path = '/{}_train_session{}_log.csv' prediction_csv_logger(X_test_session, y_test_session, model_name, model, i, custom_path) del model K.clear_session() #print('Session', i, 'as test data gives accuracy:', test_acc) average_result = statistics.mean((session_training_results)) return average_result, session_training_results # Takes in test data and logs input data and the prediction from a model # Input: raw data, session_lengths list, total nr of sessions, batch_size, and nr of epochs # Ouput: tuple(cross validation average, list(result for each dataset(len=nr_sessions))) def prediction_csv_logger(X, y, model_name, model, session_nr, custom_path=None): csv_path = str(Path.cwd()) + '/logs/{}/{}_session{}_log.csv'.format(model_name, model_name, session_nr+1) if custom_path: path = str(Path.cwd()) + '/logs/{}' + custom_path csv_path = path.format(model_name, model_name, session_nr+1) layerOutput = model.predict(X, verbose=0) with open(csv_path, 'w') as csv_file: writer = csv.writer(csv_file) writer.writerow(['input', 'prediction', 'solution']) data = zip(X, layerOutput, y) writer.writerows(data) csv_file.close() # ----- MODELS ------ # Creates a keras.model with focus on LSTM layers # Input: input shape, classes of classification # Ouput: model:Keras.model def LSTM(input_shape, nr_classes=5): model = keras.Sequential(name='LSTM_model') model.add(keras.layers.Bidirectional(keras.layers.LSTM(128), input_shape=input_shape, name='Bidirectional_LSTM')) model.add(keras.layers.Dense(128, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu')) model.add(keras.layers.Dropout(0.3, name='Dropout')) # Output layer model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Dense_relu_output')) return model # Creates a keras.model with focus on GRU layers # Input: input shape, classes of classification # Ouput: model:Keras.model def GRU(input_shape, nr_classes=5): model = keras.Sequential(name='GRU_model') model.add(keras.layers.Bidirectional(keras.layers.GRU(128), input_shape=input_shape, name='Bidirectional_GRU')) model.add(keras.layers.Dense(128, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu')) model.add(keras.layers.Dropout(0.3, name='Dropout')) # Output layer: model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) return model # Creates a keras.model with a basic feed-forward-network # Input: input shape, classes of classification # Ouput: model:Keras.model def FFN(input_shape, nr_classes=5): model = keras.Sequential(name='FFN_model') model.add(keras.layers.Reshape((input_shape[-1],), input_shape=input_shape)) model.add(keras.layers.Dense(256, activation='relu', input_shape=input_shape, name='Dense_relu_1')) model.add(keras.layers.Dense(128, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu_2')) model.add(keras.layers.Dense(64, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu_3')) model.add(keras.layers.Dropout(0.3, name='Dropout')) # Output layer: model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) return model # Creates a keras.model with focus on Convulotion layers # Input: input shape, classes of classification # Ouput: model:Keras.model def CNN_1D(input_shape, nr_classes=5): model = keras.Sequential(name='CNN_model') model.add(keras.layers.Conv1D(32, kernel_size=5, activation='relu', input_shape=input_shape)) model.add(keras.layers.MaxPooling1D(pool_size=5)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(128, activation='relu')) model.add(keras.layers.Dropout(0.3)) # Ouput layer model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) return model if __name__ == "__main__": # ----- Load data ------ # X.shape = (2806, 1, 208) # y.shape = (2806, nr_subjects) # session_lengths.shape = (nr_subjects, nr_sessions) X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC, nr_classes=5) # Parameters: NR_SUBJECTS = 5 NR_SESSIONS = 4 BATCH_SIZE = 64 EPOCHS = 30 TEST_SESSION_NR = 4 VERBOSE = 1 MODEL_NAME = 'CNN_1D' LOG = True # ----- Get prepared data: train, validation, and test ------ # X_train.shape = (2806-X_test, 1, 208) # X_test.shape = (X_test(from session nr. ?), 1, 208) # y_train.shape = (2806-y_test, nr_subjects) # y_test.shape = (y_test(from session nr. ?), nr_subjects) X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR) ''' # ----- Make model ------ #model_GRU = GRU(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients) #model_LSTM = LSTM(input_shape=(1, 208)) # (timestep, 13*16 MFCC coefficients) model_CNN_1D = CNN(input_shape=(208, 1)) # (timestep, 13*16 MFCC coefficients) model_CNN_1D.summary() #model_GRU.summary() #model_LSTM.summary() # ----- Train network ------ #history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) #history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) history_CNN_1D = train( model_CNN_1D, np.reshape(X_train, (X_train.shape[0], 208, 1)), y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) # ----- Plot train accuracy/error ----- #plot_train_history(history) # ----- Evaluate model on test set ------ #test_loss, test_acc = model_GRU.evaluate(X_test, y_test, verbose=VERBOSE) #print('\nTest accuracy GRU:', test_acc, '\n') #test_loss, test_acc = model_LSTM.evaluate(X_test, y_test, verbose=VERBOSE) #print('\nTest accuracy LSTM:', test_acc, '\n') test_loss, test_acc = model_CNN_1D.evaluate(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, verbose=0) print('\nTest accuracy CNN_1D:', test_acc, '\n') # ----- Store test predictions in CSV ------ prediction_csv_logger(np.reshape(X_test, (X_test.shape[0], 208, 1)), y_test, MODEL_NAME, model_CNN_1D, TEST_SESSION_NR) ''' ''' # ----- Cross validation ------ # Trained on three sessions, tested on one average_GRU = session_cross_validation('GRU', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=LOG, batch_size=BATCH_SIZE, epochs=EPOCHS) average_LSTM = session_cross_validation('LSTM', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=LOG, batch_size=BATCH_SIZE, epochs=EPOCHS) average_FFN = session_cross_validation('FFN', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=LOG, batch_size=BATCH_SIZE, epochs=EPOCHS) average_CNN = session_cross_validation('CNN_1D', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=LOG, batch_size=BATCH_SIZE, epochs=EPOCHS) print('\n') print('Crossvalidated GRU:', average_GRU) print('Crossvalidated LSTM:', average_LSTM) print('Crossvalidated FFN:', average_FFN) print('Cross-validated CNN_1D:', average_CNN) print('\n') ''' #''' # ----- Inverse cross-validation ------ # Trained on one session, tested on three average_GRU = inverse_session_cross_validation('GRU', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=True, batch_size=BATCH_SIZE, epochs=EPOCHS) average_LSTM = inverse_session_cross_validation('LSTM', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=True, batch_size=BATCH_SIZE, epochs=EPOCHS) average_FFN = inverse_session_cross_validation('FFN', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=True, batch_size=BATCH_SIZE, epochs=EPOCHS) average_CNN = inverse_session_cross_validation('CNN_1D', X, y, session_lengths, nr_sessions=NR_SESSIONS, log_to_csv=True, batch_size=BATCH_SIZE, epochs=EPOCHS) print('\n') print('Cross-validated one-session-train GRU:', average_GRU) print('Cross-validated one-session-train LSTM:', average_LSTM) print('Cross-validated one-session-train FFN:', average_FFN) print('Cross-validated one-session-train CNN_1D:', average_CNN) print('\n') #'''