Compare commits

...

2 Commits

Author SHA1 Message Date
Skudalen
5b4fb77ec8 chore: do minor adjustments and fix gitignore 2021-07-30 15:38:18 +02:00
Skudalen
a4a5770488 feat: make plot func to plot N_S_comp from csv data 2021-07-30 10:59:03 +02:00
2 changed files with 204 additions and 9 deletions

160
.gitignore vendored
View File

@ -1,4 +1,164 @@
# CUSTOM
data
docs
logs
psf_lib
Created by https://www.toptal.com/developers/gitignore/api/python,visualstudiocode
# Edit at https://www.toptal.com/developers/gitignore?templates=python,visualstudiocode
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
### VisualStudioCode ###
.vscode/*
!.vscode/settings.json
!.vscode/tasks.json
!.vscode/launch.json
!.vscode/extensions.json
*.code-workspace
# Local History for Visual Studio Code
.history/
### VisualStudioCode Patch ###
# Ignore all local history of files
.history
.ionide

View File

@ -1,6 +1,7 @@
import json
from keras import callbacks
from pandas.core.frame import DataFrame
from psf_lib.python_speech_features.python_speech_features.base import mfcc
import numpy as np
from sklearn.model_selection import train_test_split
@ -139,7 +140,7 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
return X_train, X_test, y_train, y_test
# NOT FUNCTIONAL
def prepare_datasets_new(test_session_indexes:list, X, y, session_lengths, nr_subjects=5, nr_sessions=4):
def prepare_datasets_new(test_session_indexes, X, y, session_lengths, nr_subjects=5, nr_sessions=4):
X_list = []
y_list = []
@ -937,6 +938,43 @@ def plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft,
plt.style.use('seaborn-dark-palette')
plt.show()
# Plots training and validation history for CNN_1D network with SOFT and HARD data from CSV file
# Input: None -> CSV from path
# Output: None -> plot & CSV log
def plot_N_S_val_comp():
df_3 = pd.read_csv('/Users/Markus/Prosjekter git/Slovakia 2021/logs/Soft_hard_comparison_3/soft_hard_comparison_acc_data.csv')[['soft_val_acc', 'hard_val_acc']]
df_1 = pd.read_csv('/Users/Markus/Prosjekter git/Slovakia 2021/logs/Soft_hard_comparison_single/soft_hard_comparison_acc_data.csv')[['soft_val_acc', 'hard_val_acc']]
df_3 = df_3.rename(columns={'soft_val_acc': 'natural_val_3', 'hard_val_acc': 'strong_val_3'})
df_1 = df_1.rename(columns={'soft_val_acc': 'natural_val_1', 'hard_val_acc': 'strong_val_1'})
comp_df = pd.concat([df_3, df_1], axis=1)
comp_df.to_csv('logs/Natural_Strong_comp_comb/N_S_val_comp.csv')
# Plot new N/S val comp:
fig, axs = plt.subplots(nrows=1, ncols=2, sharey=True, sharex=True, figsize=(13, 4))
plt.ylim(0, 1)
plt.subplots_adjust(hspace=1.0, top=0.85, bottom=0.15, right=0.75)
fig.text(0.435, 0.03, 'Epochs', ha='center')
fig.text(0.07, 0.5, 'Accuracy', va='center', rotation='vertical')
axs[0].plot(df_3['soft_val_acc'], ':', label='CNN_1D Natural')
axs[0].plot(df_3['hard_val_acc'], '--', label='CNN_1D Strong')
axs[0].set_title('Validation accuracy (3 session training)')
axs[1].plot(df_1['soft_val_acc'], ':', label='CNN_1D Natural')
axs[1].plot(df_1['hard_val_acc'], '--', label='CNN_1D Strong')
axs[1].set_title('Validation accuracy (1 session training)')
#for ax in axs:
# ax.set_xlabel('Epochs')
# ax.set_ylabel('Accuracy')
plt.legend(bbox_to_anchor=(1.75, 0.5), title='Typing behavior evaluated\n', loc='center right')
plt.ylim(0.50, 1.00)
plt.show()
# ----- MODELS ------
# Creates a keras.model with focus on LSTM layers
@ -1006,8 +1044,8 @@ if __name__ == "__main__":
# X.shape = (2806, 1, 208)
# y.shape = (2806, nr_subjects)
# session_lengths.shape = (nr_subjects, nr_sessions)
X_soft, y_soft, session_lengths_soft = load_data_from_json(SOFT_DATA_PATH_MFCC, nr_classes=5)
X_hard, y_hard, session_lengths_hard = load_data_from_json(HARD_DATA_PATH_MFCC, nr_classes=5)
#X_soft, y_soft, session_lengths_soft = load_data_from_json(SOFT_DATA_PATH_MFCC, nr_classes=5)
#X_hard, y_hard, session_lengths_hard = load_data_from_json(HARD_DATA_PATH_MFCC, nr_classes=5)
# Parameters:
NR_SUBJECTS = 5
@ -1129,10 +1167,7 @@ if __name__ == "__main__":
#plot_comp_spread_single(X, y, session_lengths, NR_SESSIONS, epochs=30)
#plot_comp_accuracy_single(X_soft, y_soft, session_lengths_soft, NR_SESSIONS, epochs=30)
plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
#plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
#plot_comp_SoftHard_3(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
#plot_N_S_val_comp()