Compare commits
2 Commits
59dd1b8138
...
5b4fb77ec8
Author | SHA1 | Date | |
---|---|---|---|
|
5b4fb77ec8 | ||
|
a4a5770488 |
160
.gitignore
vendored
160
.gitignore
vendored
@ -1,4 +1,164 @@
|
||||
# CUSTOM
|
||||
data
|
||||
docs
|
||||
logs
|
||||
psf_lib
|
||||
|
||||
Created by https://www.toptal.com/developers/gitignore/api/python,visualstudiocode
|
||||
# Edit at https://www.toptal.com/developers/gitignore?templates=python,visualstudiocode
|
||||
|
||||
### Python ###
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
### VisualStudioCode ###
|
||||
.vscode/*
|
||||
!.vscode/settings.json
|
||||
!.vscode/tasks.json
|
||||
!.vscode/launch.json
|
||||
!.vscode/extensions.json
|
||||
*.code-workspace
|
||||
|
||||
# Local History for Visual Studio Code
|
||||
.history/
|
||||
|
||||
### VisualStudioCode Patch ###
|
||||
# Ignore all local history of files
|
||||
.history
|
||||
.ionide
|
@ -1,6 +1,7 @@
|
||||
import json
|
||||
|
||||
from keras import callbacks
|
||||
from pandas.core.frame import DataFrame
|
||||
from psf_lib.python_speech_features.python_speech_features.base import mfcc
|
||||
import numpy as np
|
||||
from sklearn.model_selection import train_test_split
|
||||
@ -139,7 +140,7 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
||||
return X_train, X_test, y_train, y_test
|
||||
|
||||
# NOT FUNCTIONAL
|
||||
def prepare_datasets_new(test_session_indexes:list, X, y, session_lengths, nr_subjects=5, nr_sessions=4):
|
||||
def prepare_datasets_new(test_session_indexes, X, y, session_lengths, nr_subjects=5, nr_sessions=4):
|
||||
|
||||
X_list = []
|
||||
y_list = []
|
||||
@ -937,6 +938,43 @@ def plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft,
|
||||
plt.style.use('seaborn-dark-palette')
|
||||
plt.show()
|
||||
|
||||
# Plots training and validation history for CNN_1D network with SOFT and HARD data from CSV file
|
||||
# Input: None -> CSV from path
|
||||
# Output: None -> plot & CSV log
|
||||
def plot_N_S_val_comp():
|
||||
|
||||
df_3 = pd.read_csv('/Users/Markus/Prosjekter git/Slovakia 2021/logs/Soft_hard_comparison_3/soft_hard_comparison_acc_data.csv')[['soft_val_acc', 'hard_val_acc']]
|
||||
df_1 = pd.read_csv('/Users/Markus/Prosjekter git/Slovakia 2021/logs/Soft_hard_comparison_single/soft_hard_comparison_acc_data.csv')[['soft_val_acc', 'hard_val_acc']]
|
||||
|
||||
df_3 = df_3.rename(columns={'soft_val_acc': 'natural_val_3', 'hard_val_acc': 'strong_val_3'})
|
||||
df_1 = df_1.rename(columns={'soft_val_acc': 'natural_val_1', 'hard_val_acc': 'strong_val_1'})
|
||||
comp_df = pd.concat([df_3, df_1], axis=1)
|
||||
comp_df.to_csv('logs/Natural_Strong_comp_comb/N_S_val_comp.csv')
|
||||
|
||||
# Plot new N/S val comp:
|
||||
fig, axs = plt.subplots(nrows=1, ncols=2, sharey=True, sharex=True, figsize=(13, 4))
|
||||
plt.ylim(0, 1)
|
||||
plt.subplots_adjust(hspace=1.0, top=0.85, bottom=0.15, right=0.75)
|
||||
fig.text(0.435, 0.03, 'Epochs', ha='center')
|
||||
fig.text(0.07, 0.5, 'Accuracy', va='center', rotation='vertical')
|
||||
|
||||
axs[0].plot(df_3['soft_val_acc'], ':', label='CNN_1D Natural')
|
||||
axs[0].plot(df_3['hard_val_acc'], '--', label='CNN_1D Strong')
|
||||
axs[0].set_title('Validation accuracy (3 session training)')
|
||||
|
||||
axs[1].plot(df_1['soft_val_acc'], ':', label='CNN_1D Natural')
|
||||
axs[1].plot(df_1['hard_val_acc'], '--', label='CNN_1D Strong')
|
||||
axs[1].set_title('Validation accuracy (1 session training)')
|
||||
|
||||
#for ax in axs:
|
||||
# ax.set_xlabel('Epochs')
|
||||
# ax.set_ylabel('Accuracy')
|
||||
|
||||
plt.legend(bbox_to_anchor=(1.75, 0.5), title='Typing behavior evaluated\n', loc='center right')
|
||||
plt.ylim(0.50, 1.00)
|
||||
plt.show()
|
||||
|
||||
|
||||
# ----- MODELS ------
|
||||
|
||||
# Creates a keras.model with focus on LSTM layers
|
||||
@ -1006,8 +1044,8 @@ if __name__ == "__main__":
|
||||
# X.shape = (2806, 1, 208)
|
||||
# y.shape = (2806, nr_subjects)
|
||||
# session_lengths.shape = (nr_subjects, nr_sessions)
|
||||
X_soft, y_soft, session_lengths_soft = load_data_from_json(SOFT_DATA_PATH_MFCC, nr_classes=5)
|
||||
X_hard, y_hard, session_lengths_hard = load_data_from_json(HARD_DATA_PATH_MFCC, nr_classes=5)
|
||||
#X_soft, y_soft, session_lengths_soft = load_data_from_json(SOFT_DATA_PATH_MFCC, nr_classes=5)
|
||||
#X_hard, y_hard, session_lengths_hard = load_data_from_json(HARD_DATA_PATH_MFCC, nr_classes=5)
|
||||
|
||||
# Parameters:
|
||||
NR_SUBJECTS = 5
|
||||
@ -1129,10 +1167,7 @@ if __name__ == "__main__":
|
||||
|
||||
#plot_comp_spread_single(X, y, session_lengths, NR_SESSIONS, epochs=30)
|
||||
#plot_comp_accuracy_single(X_soft, y_soft, session_lengths_soft, NR_SESSIONS, epochs=30)
|
||||
plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
||||
|
||||
#plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
||||
#plot_comp_SoftHard_3(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
||||
|
||||
|
||||
|
||||
|
||||
#plot_N_S_val_comp()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user