chore: add the librosa lib
This commit is contained in:
parent
99277bc101
commit
f9434a3b66
@ -7,8 +7,9 @@ from pandas.core.frame import DataFrame
|
||||
from math import floor
|
||||
import sys
|
||||
sys.path.insert(0, '/Users/Markus/Prosjekter git/Slovakia 2021/python_speech_features/python_speech_features')
|
||||
from python_speech_features.python_speech_features import *
|
||||
from python_speech_features.python_speech_features import mfcc
|
||||
import json
|
||||
import librosa
|
||||
#from Present_data import get_data
|
||||
|
||||
# Global variables for MFCC
|
||||
@ -585,8 +586,8 @@ class DL_data_handler:
|
||||
main_df = pd.concat([main_df, adding_df], ignore_index=True)
|
||||
samplerate = get_samplerate(main_df)
|
||||
return main_df, samplerate
|
||||
'''
|
||||
def save_mfcc(raw_data_dict, json_path, samples_per_subject):
|
||||
|
||||
def save_mfcc(self, json_path=JSON_PATH):
|
||||
|
||||
# dictionary to store mapping, labels, and MFCCs
|
||||
data = {
|
||||
@ -597,13 +598,14 @@ class DL_data_handler:
|
||||
|
||||
#hop_length = MFCC_STEPSIZE * sample_rate
|
||||
#num_mfcc_vectors_per_segment = math.ceil(samples_per_subject / hop_length)
|
||||
raw_data_dict = self.get_samples_dict()
|
||||
|
||||
# loop through all subjects to get samples
|
||||
for key, value in raw_data_dict.items():
|
||||
|
||||
|
||||
# save genre label (i.e., sub-folder name) in the mapping
|
||||
subject_label = 'Subject ' + key
|
||||
subject_label = 'Subject ' + str(key)
|
||||
data["mapping"].append(subject_label)
|
||||
print("\nProcessing: {}".format(subject_label))
|
||||
|
||||
@ -612,9 +614,12 @@ class DL_data_handler:
|
||||
|
||||
# load audio file
|
||||
signal, sample_rate = sample[0], sample[1]
|
||||
n_fft = MFCC_WINDOWSIZE * sample_rate
|
||||
hop_length = MFCC_STEPSIZE * sample_rate
|
||||
|
||||
# extract mfcc
|
||||
mfcc = mfcc_custom(signal, sample_rate, MFCC_WINDOWSIZE, MFCC_STEPSIZE, NR_COEFFICIENTS, NR_MEL_BINS)
|
||||
mfcc = librosa.feature.mfcc(signal, sample_rate, n_mfcc=NR_COEFFICIENTS, n_fft=n_fft, hop_length=hop_length)
|
||||
#mfcc = mfcc_custom(signal, sample_rate, MFCC_WINDOWSIZE, MFCC_STEPSIZE, NR_COEFFICIENTS, NR_MEL_BINS)
|
||||
mfcc = mfcc.T
|
||||
print(len(mfcc))
|
||||
|
||||
@ -627,7 +632,7 @@ class DL_data_handler:
|
||||
# save MFCCs to json file
|
||||
with open(json_path, "w") as fp:
|
||||
json.dump(data, fp, indent=4)
|
||||
'''
|
||||
|
||||
|
||||
# HELP FUNCTIONS: ------------------------------------------------------------------------:
|
||||
|
||||
@ -676,4 +681,4 @@ def mfcc_custom(df:DataFrame, samplesize, windowsize=MFCC_WINDOWSIZE,
|
||||
nr_mel_filters=NR_MEL_BINS):
|
||||
N = get_xory_from_df('x', df)
|
||||
y = get_xory_from_df('y', df)
|
||||
return N, base.mfcc(y, samplesize, windowsize, stepsize, nr_coefficients, nr_mel_filters)
|
||||
return N, mfcc(y, samplesize, windowsize, stepsize, nr_coefficients, nr_mel_filters)
|
@ -222,13 +222,11 @@ def main():
|
||||
csv_handler = CSV_handler()
|
||||
csv_handler.load_data('soft')
|
||||
dl_data_handler = DL_data_handler(csv_handler)
|
||||
mfcc_3_plots_1_1_2(csv_handler)
|
||||
|
||||
'''
|
||||
dl_data_handler.store_samples(10)
|
||||
dict = dl_data_handler.samples_per_subject
|
||||
print(len(dict.get(2)))
|
||||
dl_data_handler.save_mfcc()
|
||||
'''
|
||||
|
||||
|
||||
|
||||
main()
|
BIN
__pycache__/Handle_emg_data.cpython-36.pyc
Normal file
BIN
__pycache__/Handle_emg_data.cpython-36.pyc
Normal file
Binary file not shown.
Binary file not shown.
BIN
__pycache__/Signal_prep.cpython-36.pyc
Normal file
BIN
__pycache__/Signal_prep.cpython-36.pyc
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user