feat: add func for plotting all emg from

one subject
This commit is contained in:
Skudalen 2021-06-29 11:42:37 +02:00
parent c667bc7c7f
commit e1f3e509b1
3 changed files with 69 additions and 2 deletions

View File

@ -449,6 +449,14 @@ class CSV_handler:
df = container.dict_list[round - 1].get(which_arm)[emg_nr - 1]
return df
'''
def get_keyboard_data(self, filename:str, pres_or_release:str='pressed'):
filepath = self.working_dir + str(filename)
df = pd.read_csv(filepath)
if pres_or_release == 'pressed':
df = df[(df['event'] == 'KeyPressed') and (df['event'] == 'KeyPressed')]
else
'''
# HELP FUNCTIONS: ------------------------------------------------------------------------:

View File

@ -69,6 +69,34 @@ def plot_3_mfcc(mfcc_data1, data_label1:str, mfcc_data2, data_label2:str, mfcc_d
plt.show()
def plot_all_emg_mfcc(data_list:list, label_list:list):
fig, axes = plt.subplots(nrows=4, ncols=2)
plt.subplots_adjust(hspace=1.4, wspace=0.4)
ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * mfcc_stepsize))
plt.autoscale()
d_list = np.array([ [data_list[0], data_list[4]],
[data_list[1], data_list[5]],
[data_list[2], data_list[6]],
[data_list[3], data_list[7]]
])
l_list = np.array([ [label_list[0], label_list[4]],
[label_list[1], label_list[5]],
[label_list[2], label_list[6]],
[label_list[3], label_list[7]]
])
for col in [0, 1]:
for ax, data, label in zip(axes[:,col], d_list[:,col], l_list[:,col]):
mfcc_data= np.swapaxes(data, 0 ,1)
ax.xaxis.set_major_formatter(ticks_x)
ax.imshow(mfcc_data, interpolation='nearest', cmap=cm.coolwarm, origin='lower')
ax.set_title('MFCC: ' + str(label))
ax.set_ylabel('Coefficients')
ax.set_xlabel('Time(s)')
plt.show()
# DATA FUNCTIONS: --------------------------------------------------------------:
@ -168,14 +196,45 @@ def mfcc_3_plots_3_3_4(csv_handler:CSV_handler):
plot_3_mfcc(mfcc_feat1, label_1, mfcc_feat2, label_2, mfcc_feat3, label_3)
def mfcc_all_emg_plots(csv_handler:CSV_handler):
df1, samplerate1 = get_data(csv_handler, 1, 'left', 1, 1)
df2, samplerate2 = get_data(csv_handler, 1, 'left', 1, 2)
df3, samplerate3 = get_data(csv_handler, 1, 'left', 1, 3)
df4, samplerate4 = get_data(csv_handler, 1, 'left', 1, 4)
df5, samplerate5 = get_data(csv_handler, 1, 'left', 1, 5)
df6, samplerate6 = get_data(csv_handler, 1, 'left', 1, 6)
df7, samplerate7 = get_data(csv_handler, 1, 'left', 1, 7)
df8, samplerate8 = get_data(csv_handler, 1, 'left', 1, 8)
N1, mfcc_feat1 = mfcc_custom(df1, samplerate1, mfcc_windowsize, mfcc_stepsize)
N2, mfcc_feat2 = mfcc_custom(df2, samplerate2, mfcc_windowsize, mfcc_stepsize)
N3, mfcc_feat3 = mfcc_custom(df3, samplerate3, mfcc_windowsize, mfcc_stepsize)
N4, mfcc_feat4 = mfcc_custom(df4, samplerate4, mfcc_windowsize, mfcc_stepsize)
N5, mfcc_feat5 = mfcc_custom(df5, samplerate5, mfcc_windowsize, mfcc_stepsize)
N6, mfcc_feat6 = mfcc_custom(df6, samplerate6, mfcc_windowsize, mfcc_stepsize)
N7, mfcc_feat7 = mfcc_custom(df7, samplerate7, mfcc_windowsize, mfcc_stepsize)
N8, mfcc_feat8 = mfcc_custom(df8, samplerate8, mfcc_windowsize, mfcc_stepsize)
feat_list = [mfcc_feat1, mfcc_feat2, mfcc_feat3, mfcc_feat4, mfcc_feat5, mfcc_feat6, mfcc_feat7, mfcc_feat8]
label_1 = 'Subject 1, session 1, left arm, emg nr. 1'
label_2 = 'Subject 1, session 1, left arm, emg nr. 2'
label_3 = 'Subject 1, session 1, left arm, emg nr. 3'
label_4 = 'Subject 1, session 1, left arm, emg nr. 4'
label_5 = 'Subject 1, session 1, left arm, emg nr. 5'
label_6 = 'Subject 1, session 1, left arm, emg nr. 6'
label_7 = 'Subject 1, session 1, left arm, emg nr. 7'
label_8 = 'Subject 1, session 1, left arm, emg nr. 8'
label_list = [label_1, label_2, label_3, label_4, label_5, label_6, label_7, label_8]
plot_all_emg_mfcc(feat_list, label_list)
# MAIN: ------------------------------------------------------------------------:
def main():
csv_handler = CSV_handler()
load_data(csv_handler, 'soft')
mfcc_3_plots_1_1_2(csv_handler)
mfcc_3_plots_3_3_4(csv_handler)
#mfcc_3_plots_1_1_2(csv_handler)
#mfcc_3_plots_3_3_4(csv_handler)
mfcc_all_emg_plots(csv_handler)
main()