feat: make func for cross validation based on session split
This commit is contained in:
parent
c009b0cdb2
commit
e0e88abf41
@ -4,9 +4,11 @@ import numpy as np
|
|||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import tensorflow.keras as keras
|
import tensorflow.keras as keras
|
||||||
|
from keras import backend as K
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import statistics
|
||||||
|
|
||||||
# Path to json file that stores MFCCs and subject labels for each processed sample
|
# Path to json file that stores MFCCs and subject labels for each processed sample
|
||||||
DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
||||||
@ -14,7 +16,7 @@ DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
|||||||
# Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1)
|
# Loads data from the json file and reshapes X_data(samples, 1, 208) and y_data(samples, 1)
|
||||||
# Input: JSON path
|
# Input: JSON path
|
||||||
# Ouput: X(mfcc data), y(labels), session_lengths
|
# Ouput: X(mfcc data), y(labels), session_lengths
|
||||||
def load_data_from_json(data_path):
|
def load_data_from_json(data_path, nr_classes):
|
||||||
|
|
||||||
with open(data_path, "r") as fp:
|
with open(data_path, "r") as fp:
|
||||||
data = json.load(fp)
|
data = json.load(fp)
|
||||||
@ -23,12 +25,12 @@ def load_data_from_json(data_path):
|
|||||||
X = np.array(data['mfcc'])
|
X = np.array(data['mfcc'])
|
||||||
#print(X.shape)
|
#print(X.shape)
|
||||||
X = X.reshape(X.shape[0], 1, X.shape[1])
|
X = X.reshape(X.shape[0], 1, X.shape[1])
|
||||||
#print(X.shape)
|
print(X.shape)
|
||||||
|
|
||||||
y = np.array(data["labels"])
|
y = np.array(data["labels"])
|
||||||
#print(y.shape)
|
#print(y.shape)
|
||||||
y = y.reshape(y.shape[0], 1)
|
y = keras.utils.to_categorical(y, nr_classes)
|
||||||
#print(y.shape)
|
print(y.shape)
|
||||||
|
|
||||||
session_lengths = np.array(data['session_lengths'])
|
session_lengths = np.array(data['session_lengths'])
|
||||||
#print(session_lengths.shape)
|
#print(session_lengths.shape)
|
||||||
@ -188,18 +190,26 @@ def RNN_LSTM(input_shape, nr_classes=5):
|
|||||||
# Trains the model
|
# Trains the model
|
||||||
# Input: Keras.model, batch_size, nr epochs, training, and validation data
|
# Input: Keras.model, batch_size, nr epochs, training, and validation data
|
||||||
# Ouput: History
|
# Ouput: History
|
||||||
def train(model, X_train, X_validation, y_train, y_validation, batch_size=64, epochs=30):
|
def train(model, X_train, y_train, verbose, batch_size=64, epochs=30, X_validation=None, y_validation=None):
|
||||||
|
|
||||||
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
|
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
|
||||||
model.compile(optimizer=optimiser,
|
model.compile(optimizer=optimiser,
|
||||||
loss='sparse_categorical_crossentropy',
|
loss='categorical_crossentropy',
|
||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
history = model.fit(X_train,
|
if X_validation != None:
|
||||||
y_train,
|
history = model.fit(X_train,
|
||||||
validation_data=(X_validation, y_validation),
|
y_train,
|
||||||
batch_size=batch_size,
|
validation_data=(X_validation, y_validation),
|
||||||
epochs=epochs)
|
batch_size=batch_size,
|
||||||
|
epochs=epochs,
|
||||||
|
verbose=verbose)
|
||||||
|
else:
|
||||||
|
history = model.fit(X_train,
|
||||||
|
y_train,
|
||||||
|
batch_size=batch_size,
|
||||||
|
epochs=epochs,
|
||||||
|
verbose=verbose)
|
||||||
return history
|
return history
|
||||||
|
|
||||||
|
|
||||||
@ -224,32 +234,94 @@ def print_session_train_data(X_train, X_test, y_train, y_test, session_lengths,
|
|||||||
print('Datapoints in session ' + str(session_nr) + ':', get_nr_in_session(session_lengths, session_nr))
|
print('Datapoints in session ' + str(session_nr) + ':', get_nr_in_session(session_lengths, session_nr))
|
||||||
print('Should be remaining:', 2806 - get_nr_in_session(session_lengths, session_nr))
|
print('Should be remaining:', 2806 - get_nr_in_session(session_lengths, session_nr))
|
||||||
|
|
||||||
|
# Reshapes training og test data into batches
|
||||||
|
# Input: training, test data (and validation), batch_size
|
||||||
|
# Ouput: training, test data (and validation)
|
||||||
|
def batch_formatting(X_train, X_test, y_train, y_test, batch_size=64, nr_classes=5, X_validation=None, y_validation=None):
|
||||||
|
|
||||||
|
train_splits = X_train.shape[0] // batch_size
|
||||||
|
train_rest = X_train.shape[0] % batch_size
|
||||||
|
test_splits = X_test.shape[0] // batch_size
|
||||||
|
test_rest = X_test.shape[0] % batch_size
|
||||||
|
|
||||||
|
X_train = X_train[:-train_rest]
|
||||||
|
y_train = y_train[:-train_rest]
|
||||||
|
X_test = X_test[:-test_rest]
|
||||||
|
y_test = y_test[:-test_rest]
|
||||||
|
|
||||||
|
X_train_batch = np.reshape(X_train, (batch_size, train_splits, 208))
|
||||||
|
y_train_batch = np.reshape(y_train, (batch_size, train_splits, nr_classes))
|
||||||
|
X_test_batch = np.reshape(X_test, (batch_size, test_splits, 208))
|
||||||
|
y_test_batch = np.reshape(y_test, (batch_size, test_splits, nr_classes))
|
||||||
|
|
||||||
|
if X_validation != None:
|
||||||
|
val_splits = X_validation.shape[0] // batch_size
|
||||||
|
val_rest = X_validation.shape[0] % batch_size
|
||||||
|
X_validation = X_validation[:-val_rest]
|
||||||
|
y_validation = y_validation[:-val_rest]
|
||||||
|
X_val_batch = np.reshape(X_validation, (batch_size, val_splits, 208))
|
||||||
|
y_val_batch = np.reshape(y_validation, (batch_size, val_splits))
|
||||||
|
return X_train_batch, X_test_batch, y_train_batch, y_test_batch, X_val_batch, y_val_batch
|
||||||
|
|
||||||
|
return X_train_batch, X_test_batch, y_train_batch, y_test_batch
|
||||||
|
|
||||||
|
def session_cross_validation(X, y, session_lengths, nr_sessions, batch_size=64, epochs=30):
|
||||||
|
session_training_results = []
|
||||||
|
for i in range(nr_sessions):
|
||||||
|
model = RNN_LSTM(input_shape=(1, 208))
|
||||||
|
X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
|
||||||
|
train(model, X_train_session, y_train_session, verbose=0, batch_size=batch_size, epochs=epochs)
|
||||||
|
test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2)
|
||||||
|
session_training_results.append(test_acc)
|
||||||
|
del model
|
||||||
|
K.clear_session()
|
||||||
|
print('Session', i, 'as test data gives accuracy:', test_acc)
|
||||||
|
average_result = statistics.mean((session_training_results))
|
||||||
|
return average_result, session_training_results
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
# Load data
|
# ----- Load data ------
|
||||||
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC)
|
# X.shape = (2806, 1, 208)
|
||||||
|
# y.shape = (2806, 5)
|
||||||
|
# session_lengths.shape = (5, 4)
|
||||||
|
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC, nr_classes=5)
|
||||||
|
|
||||||
|
# Parameters:
|
||||||
|
NR_SUBJECTS = 5
|
||||||
|
NR_SESSIONS = 4
|
||||||
|
BATCH_SIZE = 64
|
||||||
|
EPOCHS = 30
|
||||||
|
|
||||||
|
# ----- Get prepared data: train, validation, and test ------
|
||||||
|
'''
|
||||||
|
|
||||||
# Get prepared data: train, validation, and test
|
|
||||||
session_nr = 4
|
|
||||||
X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, session_nr)
|
X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, session_nr)
|
||||||
|
print(X_train.shape)
|
||||||
|
print(y_train.shape)
|
||||||
|
print(X_test.shape)
|
||||||
|
print(y_test.shape)
|
||||||
#print_session_train_data(X_train, X_test, y_train, y_test, session_lengths, session_nr)
|
#print_session_train_data(X_train, X_test, y_train, y_test, session_lengths, session_nr)
|
||||||
|
'''
|
||||||
|
|
||||||
|
#'''
|
||||||
|
# ----- Make model ------
|
||||||
|
#model = RNN_LSTM(input_shape=(1, 208)) # (timestep, coefficients)
|
||||||
|
#model.summary()
|
||||||
|
|
||||||
# Make model
|
# ----- Train network ------
|
||||||
model = RNN_LSTM(input_shape=(1, 208))
|
#history = train(model, X_train, y_train, batch_size=batch_size, epochs=30)
|
||||||
model.summary()
|
average = session_cross_validation(X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
||||||
|
print('\nCrossvalidated:', average)
|
||||||
# Train network
|
|
||||||
history = train(model, X_train, X_validation, y_train, y_validation, batch_size=64, epochs=30)
|
|
||||||
|
|
||||||
# plot accuracy/error for training and validation
|
# plot accuracy/error for training and validation
|
||||||
plot_history(history)
|
#plot_history(history)
|
||||||
|
|
||||||
# evaluate model on test set
|
|
||||||
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
|
|
||||||
print('\nTest accuracy:', test_acc)
|
|
||||||
|
|
||||||
|
# ----- Evaluate model on test set ------
|
||||||
|
#test_loss, test_acc = model.evaluate(X_test, y_test, verbose=1)
|
||||||
|
#print('\nTest accuracy:', test_acc)
|
||||||
|
#'''
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user