feat: implement func for session data prep
This commit is contained in:
parent
3c213cce7c
commit
c009b0cdb2
@ -90,12 +90,14 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
|||||||
end_test_index = start_test_index + session_lengths[0][test_session_index-1]
|
end_test_index = start_test_index + session_lengths[0][test_session_index-1]
|
||||||
end_subject_index = subject_starting_index + sum(session_lengths[0])
|
end_subject_index = subject_starting_index + sum(session_lengths[0])
|
||||||
|
|
||||||
print(session_lengths[0])
|
# Testing to check correctly slicing
|
||||||
|
'''
|
||||||
|
print(session_lengths[0], 'Sum:', sum(session_lengths[0]))
|
||||||
print('Subject start:', subject_starting_index)
|
print('Subject start:', subject_starting_index)
|
||||||
print('Test start:', start_test_index)
|
print('Test start:', start_test_index)
|
||||||
print('Test end:', end_test_index)
|
print('Test end:', end_test_index)
|
||||||
print('Subject end:', end_subject_index, '\n -------')
|
print('Subject end:', end_subject_index, '\n -------')
|
||||||
|
'''
|
||||||
if start_test_index == subject_starting_index:
|
if start_test_index == subject_starting_index:
|
||||||
X_test = X[start_test_index:end_test_index]
|
X_test = X[start_test_index:end_test_index]
|
||||||
y_test = y[start_test_index:end_test_index]
|
y_test = y[start_test_index:end_test_index]
|
||||||
@ -115,9 +117,9 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
|||||||
y_train = y[subject_starting_index:start_test_index]
|
y_train = y[subject_starting_index:start_test_index]
|
||||||
X_test = X[start_test_index:end_test_index]
|
X_test = X[start_test_index:end_test_index]
|
||||||
y_test = y[start_test_index:end_test_index]
|
y_test = y[start_test_index:end_test_index]
|
||||||
X_train = X[end_test_index:end_subject_index]
|
X_train = np.concatenate((X_train, X[end_test_index:end_subject_index]))
|
||||||
y_train = y[end_test_index:end_subject_index]
|
y_train = np.concatenate((y_train, y[end_test_index:end_subject_index]))
|
||||||
|
#print(X_train.shape, '\n -------')
|
||||||
subject_starting_index = max(end_subject_index, end_test_index)
|
subject_starting_index = max(end_subject_index, end_test_index)
|
||||||
|
|
||||||
for i in range(1, nr_subjects):
|
for i in range(1, nr_subjects):
|
||||||
@ -125,12 +127,14 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
|||||||
end_test_index = start_test_index + session_lengths[i][test_session_index-1]
|
end_test_index = start_test_index + session_lengths[i][test_session_index-1]
|
||||||
end_subject_index = subject_starting_index + sum(session_lengths[i])
|
end_subject_index = subject_starting_index + sum(session_lengths[i])
|
||||||
|
|
||||||
print(session_lengths[i])
|
# Testing to check correctly slicing
|
||||||
|
'''
|
||||||
|
print(session_lengths[i], 'Sum:', sum(session_lengths[i]))
|
||||||
print('Subject start:', subject_starting_index)
|
print('Subject start:', subject_starting_index)
|
||||||
print('Test start:', start_test_index)
|
print('Test start:', start_test_index)
|
||||||
print('Test end:', end_test_index)
|
print('Test end:', end_test_index)
|
||||||
print('Subject end:', end_subject_index, '\n -------')
|
print('Subject end:', end_subject_index, '\n -------')
|
||||||
|
'''
|
||||||
if start_test_index == subject_starting_index:
|
if start_test_index == subject_starting_index:
|
||||||
X_test = np.concatenate((X_test, X[start_test_index:end_test_index]))
|
X_test = np.concatenate((X_test, X[start_test_index:end_test_index]))
|
||||||
y_test = np.concatenate((y_test, y[start_test_index:end_test_index]))
|
y_test = np.concatenate((y_test, y[start_test_index:end_test_index]))
|
||||||
@ -151,7 +155,7 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
|||||||
y_test = np.concatenate((y_test, y[start_test_index:end_test_index]))
|
y_test = np.concatenate((y_test, y[start_test_index:end_test_index]))
|
||||||
X_train = np.concatenate((X_train, X[end_test_index:end_subject_index]))
|
X_train = np.concatenate((X_train, X[end_test_index:end_subject_index]))
|
||||||
y_train = np.concatenate((y_train, y[end_test_index:end_subject_index]))
|
y_train = np.concatenate((y_train, y[end_test_index:end_subject_index]))
|
||||||
|
#print(X_train.shape, '\n -------')
|
||||||
subject_starting_index = max(end_subject_index, end_test_index)
|
subject_starting_index = max(end_subject_index, end_test_index)
|
||||||
|
|
||||||
return X_train, X_test, y_train, y_test
|
return X_train, X_test, y_train, y_test
|
||||||
@ -202,34 +206,36 @@ def train(model, X_train, X_validation, y_train, y_validation, batch_size=64, ep
|
|||||||
# Gives nr of datapoints for chosen session
|
# Gives nr of datapoints for chosen session
|
||||||
# Input: session_lengths 2d-list, session_nr, nr of subjects
|
# Input: session_lengths 2d-list, session_nr, nr of subjects
|
||||||
# Ouput: int(datapoints)
|
# Ouput: int(datapoints)
|
||||||
def get_nr_in_session(session_lengths:list, session_nr, nr_subjects):
|
def get_nr_in_session(session_lengths:list, session_nr, nr_subjects=5):
|
||||||
summ = 0
|
summ = 0
|
||||||
for i in range(nr_subjects):
|
for i in range(nr_subjects):
|
||||||
summ += session_lengths[i][session_nr-1]
|
summ += session_lengths[i][session_nr-1]
|
||||||
return summ
|
return summ
|
||||||
|
|
||||||
|
# Prints session and training data
|
||||||
|
# Input: None
|
||||||
|
# Ouput: None -> print
|
||||||
|
def print_session_train_data(X_train, X_test, y_train, y_test, session_lengths, session_nr):
|
||||||
|
print(X_train.size)
|
||||||
|
print(X_train.shape)
|
||||||
|
print(X_test.shape)
|
||||||
|
print(y_train.shape)
|
||||||
|
print(y_test.shape)
|
||||||
|
print('Datapoints in session ' + str(session_nr) + ':', get_nr_in_session(session_lengths, session_nr))
|
||||||
|
print('Should be remaining:', 2806 - get_nr_in_session(session_lengths, session_nr))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
# Load data
|
# Load data
|
||||||
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC)
|
X, y, session_lengths = load_data_from_json(DATA_PATH_MFCC)
|
||||||
|
|
||||||
print(X.shape)
|
|
||||||
print(y.shape)
|
|
||||||
print(session_lengths.shape)
|
|
||||||
|
|
||||||
# Get prepared data: train, validation, and test
|
# Get prepared data: train, validation, and test
|
||||||
|
session_nr = 4
|
||||||
|
X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, session_nr)
|
||||||
|
#print_session_train_data(X_train, X_test, y_train, y_test, session_lengths, session_nr)
|
||||||
|
|
||||||
#X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets_percentsplit(X, y, shuffle_vars=True, validation_size=0.2, test_size=0.25)
|
|
||||||
X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, 3)
|
|
||||||
|
|
||||||
print(X_train.size)
|
|
||||||
print(X_train.shape)
|
|
||||||
print(X_test.shape)
|
|
||||||
print(y_train.shape)
|
|
||||||
print(y_test.shape)
|
|
||||||
|
|
||||||
'''
|
|
||||||
# Make model
|
# Make model
|
||||||
model = RNN_LSTM(input_shape=(1, 208))
|
model = RNN_LSTM(input_shape=(1, 208))
|
||||||
model.summary()
|
model.summary()
|
||||||
@ -243,7 +249,7 @@ if __name__ == "__main__":
|
|||||||
# evaluate model on test set
|
# evaluate model on test set
|
||||||
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
|
test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
|
||||||
print('\nTest accuracy:', test_acc)
|
print('\nTest accuracy:', test_acc)
|
||||||
'''
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user