chore: change naming convention from
x/x_trans to N/N_trans
This commit is contained in:
parent
78f4e2ffc4
commit
bca743d651
@ -115,18 +115,18 @@ def fft_of_df(df:DataFrame):
|
|||||||
y_values, duration = prep_df(df)
|
y_values, duration = prep_df(df)
|
||||||
N = y_values.size
|
N = y_values.size
|
||||||
norm = normalize_wave(y_values)
|
norm = normalize_wave(y_values)
|
||||||
x_f = fftfreq(N, 1 / SAMPLE_RATE)
|
N_trans = fftfreq(N, 1 / SAMPLE_RATE)
|
||||||
y_f = fft(norm)
|
y_f = fft(norm)
|
||||||
return x_f, y_f, duration
|
return N_trans, y_f, duration
|
||||||
|
|
||||||
# Removes noise with db4 wavelet function
|
# Removes noise with db4 wavelet function
|
||||||
def denoise_signal_pywt(df:DataFrame):
|
def wavelet_db4_denoising(df:DataFrame):
|
||||||
y_values, duration = prep_df(df)
|
y_values, duration = prep_df(df)
|
||||||
#y_values = normalize_wave(y_values)
|
#y_values = normalize_wave(y_values)
|
||||||
wavelet = pywt.Wavelet('db4')
|
wavelet = pywt.Wavelet('db4')
|
||||||
cA, cD = pywt.dwt(y_values, wavelet)
|
cA, cD = pywt.dwt(y_values, wavelet)
|
||||||
x = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2))))
|
N_trans = np.array(range(int(np.floor((y_values.size + wavelet.dec_len - 1) / 2))))
|
||||||
return x, cA, cD
|
return N_trans, cA, cD
|
||||||
|
|
||||||
# Filters signal accordning to Stein's Unbiased Risk Estimate(SURE)
|
# Filters signal accordning to Stein's Unbiased Risk Estimate(SURE)
|
||||||
def sure_threshold_filter(cA, cD):
|
def sure_threshold_filter(cA, cD):
|
||||||
@ -143,17 +143,20 @@ def plot_df(df:DataFrame):
|
|||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
# Plots ndarrays after transformations
|
# Plots ndarrays after transformations
|
||||||
def plot_trans(x_f, y_f):
|
def plot_trans(N_trans, y_trans):
|
||||||
plt.plot(x_f, np.abs(y_f))
|
plt.plot(N_trans, np.abs(y_trans))
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
def inverse_wavelet(N, cA, cD):
|
||||||
|
return None
|
||||||
|
|
||||||
#'''
|
#'''
|
||||||
handler = Handler.CSV_handler()
|
handler = Handler.CSV_handler()
|
||||||
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
|
file = "/Exp20201205_2myo_hardTypePP/HaluskaMarek_20201207_1810/myoLeftEmg.csv"
|
||||||
df = handler.get_time_emg_table(file, 1)
|
df = handler.get_time_emg_table(file, 1)
|
||||||
|
N = df.size
|
||||||
#plot_df(df)
|
#plot_df(df)
|
||||||
x, cA, cD = denoise_signal_pywt(df)
|
x, cA, cD = wavelet_db4_denoising(df)
|
||||||
#plot_trans(x, cA)
|
#plot_trans(x, cA)
|
||||||
cA_filtered, cD = soft_threshold_filter(cA, cD)
|
cA_filtered, cD = soft_threshold_filter(cA, cD)
|
||||||
plot_trans(x, cA_filtered)
|
plot_trans(x, cA_filtered)
|
Loading…
Reference in New Issue
Block a user