feat: make plot func to plot N_S_comp from csv data
This commit is contained in:
parent
59dd1b8138
commit
a4a5770488
@ -1,6 +1,7 @@
|
|||||||
import json
|
import json
|
||||||
|
|
||||||
from keras import callbacks
|
from keras import callbacks
|
||||||
|
from pandas.core.frame import DataFrame
|
||||||
from psf_lib.python_speech_features.python_speech_features.base import mfcc
|
from psf_lib.python_speech_features.python_speech_features.base import mfcc
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
@ -139,7 +140,7 @@ def prepare_datasets_sessions(X, y, session_lengths, test_session_index=4, nr_su
|
|||||||
return X_train, X_test, y_train, y_test
|
return X_train, X_test, y_train, y_test
|
||||||
|
|
||||||
# NOT FUNCTIONAL
|
# NOT FUNCTIONAL
|
||||||
def prepare_datasets_new(test_session_indexes:list, X, y, session_lengths, nr_subjects=5, nr_sessions=4):
|
def prepare_datasets_new(test_session_indexes, X, y, session_lengths, nr_subjects=5, nr_sessions=4):
|
||||||
|
|
||||||
X_list = []
|
X_list = []
|
||||||
y_list = []
|
y_list = []
|
||||||
@ -937,6 +938,43 @@ def plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft,
|
|||||||
plt.style.use('seaborn-dark-palette')
|
plt.style.use('seaborn-dark-palette')
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
# Plots training and validation history for CNN_1D network with SOFT and HARD data from CSV file
|
||||||
|
# Input: None -> CSV from path
|
||||||
|
# Output: None -> plot & CSV log
|
||||||
|
def plot_N_S_val_comp():
|
||||||
|
|
||||||
|
df_3 = pd.read_csv('/Users/Markus/Prosjekter git/Slovakia 2021/logs/Soft_hard_comparison_3/soft_hard_comparison_acc_data.csv')[['soft_val_acc', 'hard_val_acc']]
|
||||||
|
df_1 = pd.read_csv('/Users/Markus/Prosjekter git/Slovakia 2021/logs/Soft_hard_comparison_single/soft_hard_comparison_acc_data.csv')[['soft_val_acc', 'hard_val_acc']]
|
||||||
|
|
||||||
|
df_3 = df_3.rename(columns={'soft_val_acc': 'natural_val_3', 'hard_val_acc': 'strong_val_3'})
|
||||||
|
df_1 = df_1.rename(columns={'soft_val_acc': 'natural_val_1', 'hard_val_acc': 'strong_val_1'})
|
||||||
|
comp_df = pd.concat([df_3, df_1], axis=1)
|
||||||
|
comp_df.to_csv('logs/Natural_Strong_comp_comb/N_S_val_comp.csv')
|
||||||
|
|
||||||
|
# Plot new N/S val comp:
|
||||||
|
fig, axs = plt.subplots(nrows=1, ncols=2, sharey=True, sharex=True, figsize=(13, 4))
|
||||||
|
plt.ylim(0, 1)
|
||||||
|
plt.subplots_adjust(hspace=1.0, top=0.85, bottom=0.15, right=0.75)
|
||||||
|
fig.text(0.435, 0.03, 'Epochs', ha='center')
|
||||||
|
fig.text(0.07, 0.5, 'Accuracy', va='center', rotation='vertical')
|
||||||
|
|
||||||
|
axs[0].plot(df_3['soft_val_acc'], ':', label='CNN_1D Natural')
|
||||||
|
axs[0].plot(df_3['hard_val_acc'], '--', label='CNN_1D Strong')
|
||||||
|
axs[0].set_title('Validation accuracy (3 session training)')
|
||||||
|
|
||||||
|
axs[1].plot(df_1['soft_val_acc'], ':', label='CNN_1D Natural')
|
||||||
|
axs[1].plot(df_1['hard_val_acc'], '--', label='CNN_1D Strong')
|
||||||
|
axs[1].set_title('Validation accuracy (1 session training)')
|
||||||
|
|
||||||
|
#for ax in axs:
|
||||||
|
# ax.set_xlabel('Epochs')
|
||||||
|
# ax.set_ylabel('Accuracy')
|
||||||
|
|
||||||
|
plt.legend(bbox_to_anchor=(1.75, 0.5), title='Typing behavior evaluated\n', loc='center right')
|
||||||
|
plt.ylim(0.50, 1.00)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
# ----- MODELS ------
|
# ----- MODELS ------
|
||||||
|
|
||||||
# Creates a keras.model with focus on LSTM layers
|
# Creates a keras.model with focus on LSTM layers
|
||||||
@ -1006,8 +1044,8 @@ if __name__ == "__main__":
|
|||||||
# X.shape = (2806, 1, 208)
|
# X.shape = (2806, 1, 208)
|
||||||
# y.shape = (2806, nr_subjects)
|
# y.shape = (2806, nr_subjects)
|
||||||
# session_lengths.shape = (nr_subjects, nr_sessions)
|
# session_lengths.shape = (nr_subjects, nr_sessions)
|
||||||
X_soft, y_soft, session_lengths_soft = load_data_from_json(SOFT_DATA_PATH_MFCC, nr_classes=5)
|
#X_soft, y_soft, session_lengths_soft = load_data_from_json(SOFT_DATA_PATH_MFCC, nr_classes=5)
|
||||||
X_hard, y_hard, session_lengths_hard = load_data_from_json(HARD_DATA_PATH_MFCC, nr_classes=5)
|
#X_hard, y_hard, session_lengths_hard = load_data_from_json(HARD_DATA_PATH_MFCC, nr_classes=5)
|
||||||
|
|
||||||
# Parameters:
|
# Parameters:
|
||||||
NR_SUBJECTS = 5
|
NR_SUBJECTS = 5
|
||||||
@ -1129,10 +1167,7 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
#plot_comp_spread_single(X, y, session_lengths, NR_SESSIONS, epochs=30)
|
#plot_comp_spread_single(X, y, session_lengths, NR_SESSIONS, epochs=30)
|
||||||
#plot_comp_accuracy_single(X_soft, y_soft, session_lengths_soft, NR_SESSIONS, epochs=30)
|
#plot_comp_accuracy_single(X_soft, y_soft, session_lengths_soft, NR_SESSIONS, epochs=30)
|
||||||
plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
#plot_comp_val_SoftHard(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
||||||
|
|
||||||
#plot_comp_SoftHard_3(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
#plot_comp_SoftHard_3(X_soft, y_soft, X_hard, y_hard, session_lengths_soft, session_lengths_hard, NR_SESSIONS, epochs=30)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user