feat: add func which calc the samplerate

This commit is contained in:
Skudalen 2021-06-28 15:22:10 +02:00
parent 6798456c84
commit 9d3919c4f9
3 changed files with 25 additions and 11 deletions

View File

@ -467,3 +467,13 @@ def make_df_from_xandy(x, y, emg_nr):
#print(df)
return df
# Help: returns the samplerate of a df
def get_samplerate(df:DataFrame):
min, max = get_min_max_timestamp(df)
#print(min, max)
seconds = max - 60 - min
#print(seconds)
samples = len(df['timestamp'])
#print(samples)
samplerate = samples / seconds
return samplerate

View File

@ -1,8 +1,11 @@
from logging import error
from matplotlib.cbook import get_sample_data
from Handle_emg_data import *
from Signal_prep import *
import matplotlib.pyplot as plt
from matplotlib import cm, ticker
from matplotlib import cm
import matplotlib.ticker as ticker
SAMPLE_RATE = 200
@ -40,8 +43,7 @@ def plot_mfcc(mfcc_data):
fig, ax = plt.subplots()
mfcc_data= np.swapaxes(mfcc_data, 0 ,1)
#ax.axis([0, mfcc_stepsize * len(mfcc_data[0]), 0, len(mfcc_data[:,0])])
#ticks = ticker.get_xticks()* 1/10
#ticker.set_xticklabels(ticks)
#ax.set_xticks(range(int(len(mfcc_data) * 1 / mfcc_stepsize)))
ax.imshow(mfcc_data, interpolation='nearest', cmap=cm.coolwarm, origin='lower')
ax.set_title('MFCC')
plt.show()
@ -81,6 +83,10 @@ def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, round, e
df_new = Handler.make_df_from_xandy(N, y_values, emg_nr)
return df_new
def mfcc_custom(df:DataFrame, samplesize, windowsize, stepsize):
N = get_xory_from_df('x', df)
y = get_xory_from_df('y', df)
return N, base.mfcc(y, samplesize, windowsize, stepsize)
# CASE FUNTIONS
@ -100,15 +106,13 @@ def main():
csv_handler = CSV_handler()
load_data(csv_handler, 'hard')
data_frame = get_data(csv_handler, 1, 'left', 1, 1)
data_frame = get_data(csv_handler, 2, 'left', 1, 1)
#print(data_frame.head)
print(get_samplerate(data_frame))
mfcc_data = get_xory_from_df('y', data_frame[:5000])
mfcc_feat = base.mfcc(mfcc_data, SAMPLE_RATE, mfcc_windowsize, mfcc_stepsize)
print(mfcc_feat.shape)
N, mfcc_feat = mfcc_custom(data_frame[:5000], SAMPLE_RATE, mfcc_windowsize, mfcc_stepsize)
plot_mfcc(mfcc_feat)
print(get_sample_data)
return None