fix: change to right naming conventions
This commit is contained in:
		
							parent
							
								
									c36ddf1609
								
							
						
					
					
						commit
						99277bc101
					
				| @ -628,6 +628,7 @@ class DL_data_handler: | |||||||
|         with open(json_path, "w") as fp: |         with open(json_path, "w") as fp: | ||||||
|             json.dump(data, fp, indent=4) |             json.dump(data, fp, indent=4) | ||||||
|     ''' |     ''' | ||||||
|  | 
 | ||||||
| # HELP FUNCTIONS: ------------------------------------------------------------------------:  | # HELP FUNCTIONS: ------------------------------------------------------------------------:  | ||||||
| 
 | 
 | ||||||
| # Help: gets the str from emg nr | # Help: gets the str from emg nr | ||||||
| @ -669,7 +670,10 @@ class DL_data_handler: | |||||||
| 
 | 
 | ||||||
| # Slightly modified mfcc with inputs like below. | # Slightly modified mfcc with inputs like below. | ||||||
| # Returns N (x_values from original df) and mfcc_y_values  | # Returns N (x_values from original df) and mfcc_y_values  | ||||||
|     def mfcc_custom(df:DataFrame, samplesize, windowsize, stepsize, nr_coefficients, nr_mel_filters): | def mfcc_custom(df:DataFrame, samplesize, windowsize=MFCC_WINDOWSIZE,  | ||||||
|  |                                             stepsize=MFCC_STEPSIZE,  | ||||||
|  |                                             nr_coefficients=NR_COEFFICIENTS,  | ||||||
|  |                                             nr_mel_filters=NR_MEL_BINS): | ||||||
|         N = get_xory_from_df('x', df) |         N = get_xory_from_df('x', df) | ||||||
|         y = get_xory_from_df('y', df) |         y = get_xory_from_df('y', df) | ||||||
|         return N, base.mfcc(y, samplesize, windowsize, stepsize, nr_coefficients, nr_mel_filters) |         return N, base.mfcc(y, samplesize, windowsize, stepsize, nr_coefficients, nr_mel_filters) | ||||||
| @ -42,7 +42,7 @@ def plot_mfcc(mfcc_data, data_label:str): | |||||||
|     fig, ax = plt.subplots() |     fig, ax = plt.subplots() | ||||||
|     mfcc_data= np.swapaxes(mfcc_data, 0 ,1) |     mfcc_data= np.swapaxes(mfcc_data, 0 ,1) | ||||||
|      |      | ||||||
|     ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * mfcc_stepsize)) |     ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * MFCC_STEPSIZE)) | ||||||
|     ax.xaxis.set_major_formatter(ticks_x) |     ax.xaxis.set_major_formatter(ticks_x) | ||||||
| 
 | 
 | ||||||
|     ax.imshow(mfcc_data, interpolation='nearest', cmap=cm.coolwarm, origin='lower') |     ax.imshow(mfcc_data, interpolation='nearest', cmap=cm.coolwarm, origin='lower') | ||||||
| @ -55,7 +55,7 @@ def plot_3_mfcc(mfcc_data1, data_label1:str, mfcc_data2, data_label2:str, mfcc_d | |||||||
|      |      | ||||||
|     fig, axes = plt.subplots(nrows=3) |     fig, axes = plt.subplots(nrows=3) | ||||||
|     plt.subplots_adjust(hspace=1.4, wspace=0.4) |     plt.subplots_adjust(hspace=1.4, wspace=0.4) | ||||||
|     ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * mfcc_stepsize)) |     ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * MFCC_STEPSIZE)) | ||||||
| 
 | 
 | ||||||
|     data_list = [mfcc_data1, mfcc_data2, mfcc_data3] |     data_list = [mfcc_data1, mfcc_data2, mfcc_data3] | ||||||
|     label_list = [data_label1, data_label2, data_label3] |     label_list = [data_label1, data_label2, data_label3] | ||||||
| @ -74,7 +74,7 @@ def plot_3_mfcc(mfcc_data1, data_label1:str, mfcc_data2, data_label2:str, mfcc_d | |||||||
| def plot_all_emg_mfcc(data_list:list, label_list:list): | def plot_all_emg_mfcc(data_list:list, label_list:list): | ||||||
|     fig, axes = plt.subplots(nrows=4, ncols=2) |     fig, axes = plt.subplots(nrows=4, ncols=2) | ||||||
|     plt.subplots_adjust(hspace=1.4, wspace=0.4) |     plt.subplots_adjust(hspace=1.4, wspace=0.4) | ||||||
|     ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * mfcc_stepsize)) |     ticks_x = ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x * MFCC_STEPSIZE)) | ||||||
|     plt.autoscale() |     plt.autoscale() | ||||||
| 
 | 
 | ||||||
|     d_list = np.array([ [data_list[0], data_list[4]], |     d_list = np.array([ [data_list[0], data_list[4]], | ||||||
| @ -115,7 +115,7 @@ def pretty(dict): | |||||||
|      |      | ||||||
| # Takes in handler and detailes to denoise.  | # Takes in handler and detailes to denoise.  | ||||||
| # Returns arrays and df | # Returns arrays and df | ||||||
| def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, round, emg_nr): | def denoice_dataset(handler:CSV_handler, subject_nr, which_arm, round, emg_nr): | ||||||
|     df = handler.get_df_from_data_dict(subject_nr, which_arm, round, emg_nr) |     df = handler.get_df_from_data_dict(subject_nr, which_arm, round, emg_nr) | ||||||
| 
 | 
 | ||||||
|     N = get_xory_from_df('x', df) |     N = get_xory_from_df('x', df) | ||||||
| @ -123,7 +123,7 @@ def denoice_dataset(handler:Handler.CSV_handler, subject_nr, which_arm, round, e | |||||||
|     cA_filt, cD_filt = soft_threshold_filter(cA, cD) |     cA_filt, cD_filt = soft_threshold_filter(cA, cD) | ||||||
|     y_values = inverse_wavelet(df, cA_filt, cD_filt) |     y_values = inverse_wavelet(df, cA_filt, cD_filt) | ||||||
| 
 | 
 | ||||||
|     df_new = Handler.make_df_from_xandy(N, y_values, emg_nr) |     df_new = make_df_from_xandy(N, y_values, emg_nr) | ||||||
|     return df_new |     return df_new | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @ -157,9 +157,9 @@ def mfcc_3_plots_1_1_2(csv_handler:CSV_handler): | |||||||
|     #print(df1.head, samplerate1) |     #print(df1.head, samplerate1) | ||||||
|     #print(df2.head, samplerate2) |     #print(df2.head, samplerate2) | ||||||
|     #print(df3.head, samplerate3) |     #print(df3.head, samplerate3) | ||||||
|     N1, mfcc_feat1 = mfcc_custom(df1, samplerate1, mfcc_windowsize, mfcc_stepsize) |     N1, mfcc_feat1 = mfcc_custom(df1, samplerate1, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N2, mfcc_feat2 = mfcc_custom(df2, samplerate2, mfcc_windowsize, mfcc_stepsize) |     N2, mfcc_feat2 = mfcc_custom(df2, samplerate2, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N3, mfcc_feat3 = mfcc_custom(df3, samplerate3, mfcc_windowsize, mfcc_stepsize) |     N3, mfcc_feat3 = mfcc_custom(df3, samplerate3, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     label_1 = 'Subject 1, session 1, left arm, emg nr. 1' |     label_1 = 'Subject 1, session 1, left arm, emg nr. 1' | ||||||
|     label_2 = 'Subject 1, session 2, left arm, emg nr. 1' |     label_2 = 'Subject 1, session 2, left arm, emg nr. 1' | ||||||
|     label_3 = 'Subject 2, session 1, left arm, emg nr. 1' |     label_3 = 'Subject 2, session 1, left arm, emg nr. 1' | ||||||
| @ -176,9 +176,9 @@ def mfcc_3_plots_3_3_4(csv_handler:CSV_handler): | |||||||
|     #print(df1.head, samplerate1) |     #print(df1.head, samplerate1) | ||||||
|     #print(df2.head, samplerate2) |     #print(df2.head, samplerate2) | ||||||
|     #print(df3.head, samplerate3) |     #print(df3.head, samplerate3) | ||||||
|     N1, mfcc_feat1 = mfcc_custom(df1, samplerate1, mfcc_windowsize, mfcc_stepsize) |     N1, mfcc_feat1 = mfcc_custom(df1, samplerate1, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N2, mfcc_feat2 = mfcc_custom(df2, samplerate2, mfcc_windowsize, mfcc_stepsize) |     N2, mfcc_feat2 = mfcc_custom(df2, samplerate2, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N3, mfcc_feat3 = mfcc_custom(df3, samplerate3, mfcc_windowsize, mfcc_stepsize) |     N3, mfcc_feat3 = mfcc_custom(df3, samplerate3, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     label_1 = 'Subject 3, session 1, left arm, emg nr. 1' |     label_1 = 'Subject 3, session 1, left arm, emg nr. 1' | ||||||
|     label_2 = 'Subject 3, session 2, left arm, emg nr. 1' |     label_2 = 'Subject 3, session 2, left arm, emg nr. 1' | ||||||
|     label_3 = 'Subject 4, session 1, left arm, emg nr. 1' |     label_3 = 'Subject 4, session 1, left arm, emg nr. 1' | ||||||
| @ -194,14 +194,14 @@ def mfcc_all_emg_plots(csv_handler:CSV_handler): | |||||||
|     df6, samplerate6 = csv_handler.get_data( 1, 'left', 1, 6) |     df6, samplerate6 = csv_handler.get_data( 1, 'left', 1, 6) | ||||||
|     df7, samplerate7 = csv_handler.get_data( 1, 'left', 1, 7) |     df7, samplerate7 = csv_handler.get_data( 1, 'left', 1, 7) | ||||||
|     df8, samplerate8 = csv_handler.get_data( 1, 'left', 1, 8) |     df8, samplerate8 = csv_handler.get_data( 1, 'left', 1, 8) | ||||||
|     N1, mfcc_feat1 = csv_handler.mfcc_custom(df1, samplerate1, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N1, mfcc_feat1 = mfcc_custom(df1, samplerate1, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N2, mfcc_feat2 = csv_handler.mfcc_custom(df2, samplerate2, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N2, mfcc_feat2 = mfcc_custom(df2, samplerate2, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N3, mfcc_feat3 = csv_handler.mfcc_custom(df3, samplerate3, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N3, mfcc_feat3 = mfcc_custom(df3, samplerate3, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N4, mfcc_feat4 = csv_handler.mfcc_custom(df4, samplerate4, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N4, mfcc_feat4 = mfcc_custom(df4, samplerate4, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N5, mfcc_feat5 = csv_handler.mfcc_custom(df5, samplerate5, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N5, mfcc_feat5 = mfcc_custom(df5, samplerate5, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N6, mfcc_feat6 = csv_handler.mfcc_custom(df6, samplerate6, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N6, mfcc_feat6 = mfcc_custom(df6, samplerate6, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N7, mfcc_feat7 = csv_handler.mfcc_custom(df7, samplerate7, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N7, mfcc_feat7 = mfcc_custom(df7, samplerate7, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     N8, mfcc_feat8 = csv_handler.mfcc_custom(df8, samplerate8, MFCC_WINDOWSIZE, MFCC_STEPSIZE) |     N8, mfcc_feat8 = mfcc_custom(df8, samplerate8, MFCC_WINDOWSIZE, MFCC_STEPSIZE) | ||||||
|     feat_list = [mfcc_feat1, mfcc_feat2, mfcc_feat3, mfcc_feat4, mfcc_feat5, mfcc_feat6, mfcc_feat7, mfcc_feat8] |     feat_list = [mfcc_feat1, mfcc_feat2, mfcc_feat3, mfcc_feat4, mfcc_feat5, mfcc_feat6, mfcc_feat7, mfcc_feat8] | ||||||
|     label_1 = 'Subject 1, session 1, left arm, emg nr. 1' |     label_1 = 'Subject 1, session 1, left arm, emg nr. 1' | ||||||
|     label_2 = 'Subject 1, session 1, left arm, emg nr. 2' |     label_2 = 'Subject 1, session 1, left arm, emg nr. 2' | ||||||
|  | |||||||
| @ -3,7 +3,7 @@ from pandas.core.frame import DataFrame | |||||||
| from scipy.fft import fft, fftfreq | from scipy.fft import fft, fftfreq | ||||||
| import pywt | import pywt | ||||||
| import sys | import sys | ||||||
| import Handle_emg_data as Handler | from Handle_emg_data import * | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| @ -17,7 +17,7 @@ def fft_of_df(df:DataFrame): | |||||||
|     y_values = get_xory_from_df('y', df) |     y_values = get_xory_from_df('y', df) | ||||||
|     N = y_values.size |     N = y_values.size | ||||||
|     norm = normalize_wave(y_values) |     norm = normalize_wave(y_values) | ||||||
|     N_trans = fftfreq(N, 1 / Handler.get_samplerate(df)) |     N_trans = fftfreq(N, 1 / get_samplerate(df)) | ||||||
|     y_f = fft(norm) |     y_f = fft(norm) | ||||||
|     return N_trans, y_f |     return N_trans, y_f | ||||||
| 
 | 
 | ||||||
|  | |||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user