doc: make sufficient comments to all funcs
in Handle_emg_data.py
This commit is contained in:
parent
588fa7d282
commit
81d4a53335
@ -19,6 +19,9 @@ NR_MEL_BINS = 40 # Number of mel-filter-bins
|
||||
|
||||
class Data_container:
|
||||
|
||||
# Initiates personal data container for each subject. Dict for each session with keys 'left' and 'right',
|
||||
# and values equal to lists of EMG data indexed 0-7
|
||||
# NB! More sessions has to be added here in the future
|
||||
def __init__(self, subject_nr:int, subject_name:str):
|
||||
self.subject_nr = subject_nr
|
||||
self.subject_name = subject_name
|
||||
@ -32,20 +35,26 @@ class Data_container:
|
||||
self.data_dict_round4
|
||||
]
|
||||
|
||||
|
||||
class CSV_handler:
|
||||
|
||||
# Initiates object to store all datapoints in the experiment
|
||||
def __init__(self):
|
||||
self.working_dir = str(Path.cwd())
|
||||
self.data_container_dict = {} # Dict with keys equal subject numbers and values equal the relvant datacontainer
|
||||
self.data_type = None
|
||||
self.data_container_dict = {} # Dict with keys equal subject numbers and values equal to its respective datacontainer
|
||||
self.data_type = None # String describing which type of data is stored in the object
|
||||
|
||||
# Makes dataframe from the csv files in the working directory
|
||||
# Input: filename of a csv-file
|
||||
# Output: DataFrame
|
||||
def make_df(self, filename):
|
||||
filepath = self.working_dir + str(filename)
|
||||
df = pd.read_csv(filepath)
|
||||
return df
|
||||
|
||||
# Extracts out the timestamp and the selected emg signal into a new dataframe and stores the data on the subject
|
||||
# Extracts out the timestamp and the selected emg signal into a new dataframe
|
||||
# Input: filename of a csv-file, EMG nr
|
||||
# Output: DataFrame(timestamp/EMG)
|
||||
def get_time_emg_table(self, filename:str, emg_nr:int):
|
||||
tot_data_frame = self.make_df(filename)
|
||||
emg_str = 'emg' + str(emg_nr)
|
||||
@ -53,29 +62,31 @@ class CSV_handler:
|
||||
return filtered_df
|
||||
|
||||
# Takes in a df and stores the information in a Data_container object
|
||||
def store_df_in_container(self, filename:str, emg_nr:int, which_arm:str, data_container:Data_container, round:int):
|
||||
# Input: filename of a csv-file, EMG nr, left/right arm, subject's data_container, session nr
|
||||
# Output: None -> stores EMG data in data container
|
||||
def store_df_in_container(self, filename:str, emg_nr:int, which_arm:str, data_container:Data_container, session:int):
|
||||
df = self.get_time_emg_table(filename, emg_nr+1)
|
||||
|
||||
if df.isnull().values.any():
|
||||
print('NaN in: subject', data_container.subject_nr, 'arm:', which_arm, 'session:', round, 'emg nr:', emg_nr)
|
||||
print('NaN in: subject', data_container.subject_nr, 'arm:', which_arm, 'session:', session, 'emg nr:', emg_nr)
|
||||
|
||||
# Places the data correctly:
|
||||
if round == 1:
|
||||
if session == 1:
|
||||
if which_arm == 'left':
|
||||
data_container.data_dict_round1['left'][emg_nr] = df # Zero indexed emg_nr in the dict
|
||||
else:
|
||||
data_container.data_dict_round1['right'][emg_nr] = df
|
||||
elif round == 2:
|
||||
elif session == 2:
|
||||
if which_arm == 'left':
|
||||
data_container.data_dict_round2['left'][emg_nr] = df
|
||||
else:
|
||||
data_container.data_dict_round2['right'][emg_nr] = df
|
||||
elif round == 3:
|
||||
elif session == 3:
|
||||
if which_arm == 'left':
|
||||
data_container.data_dict_round3['left'][emg_nr] = df
|
||||
else:
|
||||
data_container.data_dict_round3['right'][emg_nr] = df
|
||||
elif round == 4:
|
||||
elif session == 4:
|
||||
if which_arm == 'left':
|
||||
data_container.data_dict_round4['left'][emg_nr] = df
|
||||
else:
|
||||
@ -83,14 +94,25 @@ class CSV_handler:
|
||||
else:
|
||||
raise IndexError('Not a valid index')
|
||||
|
||||
# Links the data container for a subject to the handler object
|
||||
# Links the data container for a subject to the csv_handler object
|
||||
# Input: the subject's data_container
|
||||
# Output: None -> places the data container correctly in the CSV_handler data_container_dict
|
||||
def link_container_to_handler(self, data_container:Data_container):
|
||||
# Links the retrieved data with the subjects data_container
|
||||
subject_nr = data_container.subject_nr
|
||||
self.data_container_dict[subject_nr] = data_container
|
||||
|
||||
# Loads the data from the csv files into a storing system in an CSV_handler object
|
||||
# (hard, hardPP, soft and softPP)
|
||||
# Retrieves df via the data_dict in the CSV_handler object
|
||||
# Input: Experiment detailes
|
||||
# Output: DataFrame
|
||||
def get_df_from_data_dict(self, subject_nr, which_arm, session, emg_nr):
|
||||
container:Data_container = self.data_container_dict.get(subject_nr)
|
||||
df = container.dict_list[session - 1].get(which_arm)[emg_nr - 1]
|
||||
return df
|
||||
|
||||
# Loads the data from the csv files into the storing system of the CSV_handler object
|
||||
# Input: None(CSV_handler)
|
||||
# Output: None -> load and stores data
|
||||
def load_hard_PP_emg_data(self):
|
||||
|
||||
# CSV data from subject 1
|
||||
@ -182,7 +204,6 @@ class CSV_handler:
|
||||
self.link_container_to_handler(data_container)
|
||||
self.data_type = 'hardPP'
|
||||
return self.data_container_dict
|
||||
|
||||
def load_soft_PP_emg_data(self):
|
||||
|
||||
# CSV data from subject 1
|
||||
@ -274,7 +295,6 @@ class CSV_handler:
|
||||
self.link_container_to_handler(data_container)
|
||||
self.data_type = 'softPP'
|
||||
return self.data_container_dict
|
||||
|
||||
def load_hard_original_emg_data(self):
|
||||
|
||||
# CSV data from subject 1
|
||||
@ -366,7 +386,6 @@ class CSV_handler:
|
||||
self.link_container_to_handler(data_container)
|
||||
self.data_type = 'hard'
|
||||
return self.data_container_dict
|
||||
|
||||
def load_soft_original_emg_data(self):
|
||||
|
||||
# CSV data from subject 1
|
||||
@ -459,14 +478,9 @@ class CSV_handler:
|
||||
self.data_type = 'soft'
|
||||
return self.data_container_dict
|
||||
|
||||
# Retrieves df via the data_dict in the handler object
|
||||
def get_df_from_data_dict(self, subject_nr, which_arm, session, emg_nr):
|
||||
container:Data_container = self.data_container_dict.get(subject_nr)
|
||||
df = container.dict_list[session - 1].get(which_arm)[emg_nr - 1]
|
||||
return df
|
||||
|
||||
# Loads in data to a CSV_handler. Choose data_type: hard, hardPP, soft og softPP as str.
|
||||
# Returns None.
|
||||
# Loads data the to the CSV_handler(general load func). Choose data_type: hard, hardPP, soft og softPP as str.
|
||||
# Input: String(datatype you want)
|
||||
# Output: None -> load and stores data
|
||||
def load_data(self, data_type):
|
||||
if data_type == 'hard':
|
||||
self.load_hard_original_emg_data()
|
||||
@ -480,28 +494,31 @@ class CSV_handler:
|
||||
raise Exception('Wrong input')
|
||||
|
||||
# Retrieved data. Send in loaded csv_handler and data detailes you want.
|
||||
# Returns DataFrame and samplerate
|
||||
# Input: Experiment detailes
|
||||
# Output: DataFrame, samplerate:int
|
||||
def get_data(self, subject_nr, which_arm, session, emg_nr):
|
||||
data_frame = self.get_df_from_data_dict(subject_nr, which_arm, session, emg_nr)
|
||||
samplerate = get_samplerate(data_frame)
|
||||
return data_frame, samplerate
|
||||
|
||||
# NOT IMPLEMENTED
|
||||
'''
|
||||
def get_keyboard_data(self, filename:str, pres_or_release:str='pressed'):
|
||||
filepath = self.working_dir + str(filename)
|
||||
df = pd.read_csv(filepath)
|
||||
if pres_or_release == 'pressed':
|
||||
df = df[(df['event'] == 'KeyPressed') and (df['event'] == 'KeyPressed')]
|
||||
else
|
||||
'''
|
||||
else: pass
|
||||
pass
|
||||
|
||||
|
||||
class NN_handler:
|
||||
|
||||
# Paths for data storage in json to later use in Neural_Network_Analysis.py
|
||||
JSON_PATH_REG = "reg_data.json"
|
||||
JSON_PATH_MFCC = "mfcc_data.json"
|
||||
|
||||
|
||||
# Class to manipulate data from the CSV_handler and store it for further analysis
|
||||
# NB! More subject needs to be added manually
|
||||
def __init__(self, csv_handler:CSV_handler) -> None:
|
||||
self.csv_handler = csv_handler
|
||||
# Should med 4 sessions * split nr of samples per person. Each sample is structured like this: [sample_df, samplerate]
|
||||
@ -519,13 +536,17 @@ class NN_handler:
|
||||
5: None
|
||||
}
|
||||
|
||||
def get_reg_samples_dict(self):
|
||||
# GET method for reg_samples_dict
|
||||
def get_reg_samples_dict(self) -> dict:
|
||||
return self.reg_samples_per_subject
|
||||
|
||||
def get_mfcc_samples_dict(self):
|
||||
# GET method for mfcc_samples_dict
|
||||
def get_mfcc_samples_dict(self) -> dict:
|
||||
return self.mfcc_samples_per_subject
|
||||
|
||||
|
||||
# Retrieves all EMG data from one subject and one session, and makes a list of the DataFrames
|
||||
# Input: Subject nr, Session nr (norm, not 0-indexed)
|
||||
# Output: List(df_1, ..., df_16)
|
||||
def get_emg_list(self, subject_nr, session_nr) -> list:
|
||||
list_of_emgs = []
|
||||
df, _ = self.csv_handler.get_data(subject_nr, 'left', session_nr, 1)
|
||||
@ -537,10 +558,13 @@ class NN_handler:
|
||||
df, _ = self.csv_handler.get_data(subject_nr, 'right', session_nr, emg_nr+1)
|
||||
list_of_emgs.append(DataFrame(df[get_emg_str(emg_nr+1)]))
|
||||
|
||||
return list_of_emgs # list of emg data where first element also has timestamp column
|
||||
return list_of_emgs # list of emg data
|
||||
|
||||
# Creates one Dataframe of all EMG data(one session, one subject). One column for each EMG array
|
||||
# Input: List(emg1, ..., emg16)
|
||||
# Output: DataFrame(shape[1]=16)
|
||||
def make_subj_sample(self, list_of_emgs_):
|
||||
# Test and fix if the emgs have different size
|
||||
# Test and fix if the left/right EMGs have different size
|
||||
list_of_emgs = []
|
||||
length_left_emgs = int(len(list_of_emgs_[0].index))
|
||||
length_right_emgs = int(len(list_of_emgs_[-1].index))
|
||||
@ -568,6 +592,9 @@ class NN_handler:
|
||||
|
||||
return tot_session_df
|
||||
|
||||
# Takes in all EMG session Dataframe and merges the EMG data into one column, creating one signal
|
||||
# Input: DataFrame(shape[1]=16, EMG data)
|
||||
# Output: DataFrame(signal), samplerate of it
|
||||
def reshape_session_df_to_signal(self, df:DataFrame):
|
||||
main_df = df[['timestamp', 1]].rename(columns={1: 'emg'})
|
||||
for i in range(2, 17):
|
||||
@ -576,6 +603,9 @@ class NN_handler:
|
||||
samplerate = get_samplerate(main_df)
|
||||
return main_df, samplerate
|
||||
|
||||
# Stores split, merged signals in the NN-handler's reg_samples_per_subject
|
||||
# Input: Split_nr:int(how many times to split this merged signal)
|
||||
# Output: None -> stores in NN_handler
|
||||
def store_samples(self, split_nr) -> None:
|
||||
for subject_nr in range(5):
|
||||
subj_samples = []
|
||||
@ -595,11 +625,12 @@ class NN_handler:
|
||||
|
||||
self.reg_samples_per_subject[subject_nr+1] = subj_samples
|
||||
|
||||
|
||||
# Takes in all EMG session Dataframe and creates DataFrame of MFCC samples
|
||||
# Input: DataFrame(shape[1]=16, EMG data)
|
||||
# Output: DataFrame(merged MFCC data, shape: (n, 13*16))
|
||||
def make_mfcc_df_from_session_df(self, session_df) -> DataFrame:
|
||||
session_df.rename(columns={0:'timestamp'}, inplace=True)
|
||||
samplerate = get_samplerate(session_df)
|
||||
#attach_func = lambda list_1, list_2: list_1.tolist().extend(list_2.tolist())
|
||||
attach_func = lambda list_1, list_2: list_1.extend(list_2)
|
||||
|
||||
signal = session_df[1]
|
||||
@ -607,7 +638,6 @@ class NN_handler:
|
||||
df = DataFrame(mfcc_0).dropna()
|
||||
df['combined'] = df.values.tolist()
|
||||
result_df = df['combined']
|
||||
#print(result_df)
|
||||
|
||||
for i in range(2, 17):
|
||||
signal_i = session_df[i]
|
||||
@ -618,6 +648,10 @@ class NN_handler:
|
||||
|
||||
return result_df
|
||||
|
||||
# Merges MFCC data from all sessions and stores the sample data in
|
||||
# the NN_handler's mfcc_samples_per_subject dict
|
||||
# Input: None(NN_handler)
|
||||
# Output: None -> stores in NN_handler
|
||||
def store_mfcc_samples(self) -> None:
|
||||
for subject_nr in range(5):
|
||||
subj_samples = []
|
||||
@ -636,9 +670,12 @@ class NN_handler:
|
||||
self.mfcc_samples_per_subject[subject_nr+1] = result_df
|
||||
|
||||
|
||||
# Makes MFCC data from reg_samples_per_subject and stores it in a json file
|
||||
# Input: Path to the json file
|
||||
# Output: None -> stores in json
|
||||
def save_json_reg(self, json_path=JSON_PATH_REG):
|
||||
|
||||
# dictionary to store mapping, labels, and MFCCs
|
||||
# Dictionary to store mapping, labels, and MFCCs
|
||||
data = {
|
||||
"mapping": [],
|
||||
"labels": [],
|
||||
@ -647,7 +684,7 @@ class NN_handler:
|
||||
|
||||
raw_data_dict = self.get_reg_samples_dict()
|
||||
|
||||
# loop through all subjects to get samples
|
||||
# Loop through all subjects to get samples
|
||||
mfcc_list = []
|
||||
mfcc_frame_list = []
|
||||
|
||||
@ -689,6 +726,9 @@ class NN_handler:
|
||||
with open(json_path, "w") as fp:
|
||||
json.dump(data, fp, indent=4)
|
||||
|
||||
# Stores MFCC data from mfcc_samples_per_subject in a json file
|
||||
# Input: Path to the json file
|
||||
# Output: None -> stores in json
|
||||
def save_json_mfcc(self, json_path=JSON_PATH_MFCC):
|
||||
|
||||
# dictionary to store mapping, labels, and MFCCs
|
||||
@ -752,7 +792,7 @@ def get_samplerate(df:DataFrame):
|
||||
samplerate = samples / seconds
|
||||
return int(samplerate)
|
||||
|
||||
# Takes in a df and outputs np arrays for x and y values
|
||||
# Help: takes in a df and outputs np arrays for x and y values
|
||||
def get_xory_from_df(x_or_y, df:DataFrame):
|
||||
swither = {
|
||||
'x': df.iloc[:,0].to_numpy(),
|
||||
@ -760,15 +800,15 @@ def get_xory_from_df(x_or_y, df:DataFrame):
|
||||
}
|
||||
return swither.get(x_or_y, 0)
|
||||
|
||||
# Slightly modified mfcc with inputs like below.
|
||||
# Returns N (x_values from original df) and mfcc_y_values
|
||||
def mfcc_custom(signal, samplesize, windowsize=MFCC_WINDOWSIZE,
|
||||
# Help: slightly modified mfcc with inputs like below. Returns N (x_values from original df) and mfcc_y_values
|
||||
def mfcc_custom(signal, samplerate, windowsize=MFCC_WINDOWSIZE,
|
||||
stepsize=MFCC_STEPSIZE,
|
||||
nr_coefficients=NR_COEFFICIENTS,
|
||||
nr_mel_filters=NR_MEL_BINS):
|
||||
|
||||
return mfcc(signal, samplesize, windowsize, stepsize, nr_coefficients, nr_mel_filters)
|
||||
return mfcc(signal, samplerate, windowsize, stepsize, nr_coefficients, nr_mel_filters)
|
||||
|
||||
# Help: test for unregularities in DataFrame obj
|
||||
def test_df_for_bugs(signal, key, placement_index):
|
||||
df = DataFrame(signal)
|
||||
if df.isnull().values.any():
|
||||
|
Loading…
Reference in New Issue
Block a user