diff --git a/Neural_Network_Analysis.py b/Neural_Network_Analysis.py index 9928d94..c8022f1 100644 --- a/Neural_Network_Analysis.py +++ b/Neural_Network_Analysis.py @@ -247,8 +247,7 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, elif model_name == 'GRU': model = GRU(input_shape=(1, 208)) elif model_name == 'CNN': - continue - model = CNN(input_shape=(1, 208)) + model = CNN(input_shape=(52, 52, 104)) elif model_name == 'FNN': model = FFN(input_shape=(1, 208)) else: @@ -257,6 +256,12 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions, model.summary() X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i) + if model_name == 'CNN': + X_train_session = X_train_session[..., np.newaxis] + X_test_session = X_test_session[..., np.newaxis] + X_train_session = np.reshape(X_train_session, (X_train_session.shape[0], 52, 52, 104)) + X_test_session = np.reshape(X_test_session, (X_test_session.shape[0], 52, 52, 104)) + train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs) test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2) session_training_results.append(test_acc) @@ -295,11 +300,11 @@ def GRU(input_shape, nr_classes=5): model.add(keras.layers.Dense(128, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu')) model.add(keras.layers.Dropout(0.3, name='Dropout')) # Output layer: - model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Dense_relu_output')) + model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) return model -# Creates a keras.model with focus on GRU layers +# Creates a keras.model with a basic feed-forward-network # Input: input shape, classes of classification # Ouput: model:Keras.model def FFN(input_shape, nr_classes=5): @@ -311,10 +316,36 @@ def FFN(input_shape, nr_classes=5): model.add(keras.layers.Dense(64, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu_3')) model.add(keras.layers.Dropout(0.3, name='Dropout')) # Output layer: - model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Dense_relu_output')) + model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) return model +# Creates a keras.model with focus on Convulotion layers +# Input: input shape, classes of classification +# Ouput: model:Keras.model +def CNN(input_shape, nr_classes=5): + + model = keras.Sequential(name='CNN_model') + model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) + model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')) + model.add(keras.layers.BatchNormalization()) + + model.add(keras.layers.Conv2D(32, (3, 3), activation='relu')) + model.add(keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same')) + model.add(keras.layers.BatchNormalization()) + + model.add(keras.layers.Conv2D(32, (2, 2), activation='relu')) + model.add(keras.layers.MaxPooling2D((2, 2), strides=(2, 2), padding='same')) + model.add(keras.layers.BatchNormalization()) + + # flatten output and feed it into dense layer + model.add(keras.layers.Flatten()) + model.add(keras.layers.Dense(64, activation='relu')) + model.add(keras.layers.Dropout(0.3)) + # Ouput layer + model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Softmax')) + + return model if __name__ == "__main__": @@ -340,7 +371,7 @@ if __name__ == "__main__": # y_train.shape = (2806-y_test, nr_subjects) # y_test.shape = (y_test(from session nr. ?), nr_subjects) - X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR) + #X_train, X_test, y_train, y_test = prepare_datasets_sessions(X, y, session_lengths, TEST_SESSION_NR) #''' @@ -351,22 +382,16 @@ if __name__ == "__main__": #model_GRU.summary() #model_LSTM.summary() + # ----- Train network ------ #history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) #history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS) - #average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) - #verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) - average_FFN = session_cross_validation('FNN', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) - print('\n') - #print('Crossvalidated GRU:', average_GRU) - #print('Crossvalidated LSTM:', average_LSTM) - print('Crossvalidated FFN:', average_FFN) - print('\n') # ----- Plot train accuracy/error ----- #plot_train_history(history) + # ----- Evaluate model on test set ------ #test_loss, test_acc = model_GRU.evaluate(X_test, y_test, verbose=VERBOSE) #print('\nTest accuracy GRU:', test_acc, '\n') @@ -375,4 +400,16 @@ if __name__ == "__main__": #''' + # ----- Cross validation ------ + #average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) + #verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) + #average_FFN = session_cross_validation('FNN', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) + average_CNN = session_cross_validation('CNN', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS) + + print('\n') + #print('Crossvalidated GRU:', average_GRU) + #print('Crossvalidated LSTM:', average_LSTM) + #print('Crossvalidated FFN:', average_FFN) + print('Crossvalidated CNN:', average_CNN) + print('\n')