feat: add basic FFN for comparison with other networks
This commit is contained in:
parent
2bca68fcae
commit
5123586fa6
@ -250,11 +250,12 @@ def session_cross_validation(model_name:str, X, y, session_lengths, nr_sessions,
|
|||||||
continue
|
continue
|
||||||
model = CNN(input_shape=(1, 208))
|
model = CNN(input_shape=(1, 208))
|
||||||
elif model_name == 'FNN':
|
elif model_name == 'FNN':
|
||||||
continue
|
|
||||||
model = FFN(input_shape=(1, 208))
|
model = FFN(input_shape=(1, 208))
|
||||||
else:
|
else:
|
||||||
raise Exception('Model not found')
|
raise Exception('Model not found')
|
||||||
|
|
||||||
|
model.summary()
|
||||||
|
|
||||||
X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
|
X_train_session, X_test_session, y_train_session, y_test_session = prepare_datasets_sessions(X, y, session_lengths, i)
|
||||||
train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs)
|
train(model, X_train_session, y_train_session, verbose=1, batch_size=batch_size, epochs=epochs)
|
||||||
test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2)
|
test_loss, test_acc = model.evaluate(X_test_session, y_test_session, verbose=2)
|
||||||
@ -298,6 +299,23 @@ def GRU(input_shape, nr_classes=5):
|
|||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
# Creates a keras.model with focus on GRU layers
|
||||||
|
# Input: input shape, classes of classification
|
||||||
|
# Ouput: model:Keras.model
|
||||||
|
def FFN(input_shape, nr_classes=5):
|
||||||
|
|
||||||
|
model = keras.Sequential(name='FFN_model')
|
||||||
|
model.add(keras.layers.Reshape((input_shape[-1],), input_shape=input_shape))
|
||||||
|
model.add(keras.layers.Dense(256, activation='relu', input_shape=input_shape, name='Dense_relu_1'))
|
||||||
|
model.add(keras.layers.Dense(128, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu_2'))
|
||||||
|
model.add(keras.layers.Dense(64, activation='relu', activity_regularizer=l2(0.005), name='Dense_relu_3'))
|
||||||
|
model.add(keras.layers.Dropout(0.3, name='Dropout'))
|
||||||
|
# Output layer:
|
||||||
|
model.add(keras.layers.Dense(nr_classes, activation='softmax', name='Dense_relu_output'))
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
@ -337,10 +355,14 @@ if __name__ == "__main__":
|
|||||||
#history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
#history_GRU = train(model_GRU, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
||||||
#history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
#history_LSTM = train(model_LSTM, X_train, y_train, verbose=VERBOSE, batch_size=BATCH_SIZE, epochs=EPOCHS)
|
||||||
|
|
||||||
average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
#average_GRU = session_cross_validation('GRU', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
||||||
average_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
#verage_LSTM = session_cross_validation('LSTM', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
||||||
print('\nCrossvalidated GRU:', average_GRU)
|
average_FFN = session_cross_validation('FNN', X, y, session_lengths, NR_SESSIONS, BATCH_SIZE, EPOCHS)
|
||||||
print('Crossvalidated LSTM:', average_LSTM)
|
print('\n')
|
||||||
|
#print('Crossvalidated GRU:', average_GRU)
|
||||||
|
#print('Crossvalidated LSTM:', average_LSTM)
|
||||||
|
print('Crossvalidated FFN:', average_FFN)
|
||||||
|
print('\n')
|
||||||
|
|
||||||
# ----- Plot train accuracy/error -----
|
# ----- Plot train accuracy/error -----
|
||||||
#plot_train_history(history)
|
#plot_train_history(history)
|
||||||
|
Loading…
Reference in New Issue
Block a user