chore: add to the readme and restructure
This commit is contained in:
parent
8de9efb0ac
commit
503742e231
@ -9,7 +9,7 @@ import pandas as pd
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
# path to json file that stores MFCCs and subject labels for each processed sample
|
# path to json file that stores MFCCs and subject labels for each processed sample
|
||||||
DATA_PATH = str(Path.cwd()) + "/mfcc_data.json"
|
DATA_PATH_MFCC = str(Path.cwd()) + "/mfcc_data.json"
|
||||||
|
|
||||||
def load_data_from_json(data_path):
|
def load_data_from_json(data_path):
|
||||||
|
|
||||||
@ -57,29 +57,16 @@ def plot_history(history):
|
|||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def prepare_datasets(test_size=0.25, validation_size=0.2):
|
def prepare_datasets_percentsplit(X, y, shuffle_vars, validation_size=0.2, test_size=0.25,):
|
||||||
"""Loads data and splits it into train, validation and test sets.
|
|
||||||
:param test_size (float): Value in [0, 1] indicating percentage of data set to allocate to test split
|
|
||||||
:param validation_size (float): Value in [0, 1] indicating percentage of train set to allocate to validation split
|
|
||||||
:return X_train (ndarray): Input training set
|
|
||||||
:return X_validation (ndarray): Input validation set
|
|
||||||
:return X_test (ndarray): Input test set
|
|
||||||
:return y_train (ndarray): Target training set
|
|
||||||
:return y_validation (ndarray): Target validation set
|
|
||||||
:return y_test (ndarray): Target test set
|
|
||||||
"""
|
|
||||||
|
|
||||||
# load data
|
|
||||||
X, y = load_data(DATA_PATH)
|
|
||||||
|
|
||||||
# create train, validation and test split
|
# create train, validation and test split
|
||||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, shuffle=shuffle_vars)
|
||||||
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size)
|
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=validation_size, shuffle=shuffle_vars)
|
||||||
|
|
||||||
return X_train, X_validation, X_test, y_train, y_validation, y_test
|
return X_train, X_validation, X_test, y_train, y_validation, y_test
|
||||||
|
|
||||||
|
|
||||||
def build_model(input_shape, nr_classes=5):
|
def RNN_LSTM(input_shape, nr_classes=5):
|
||||||
"""Generates RNN-LSTM model
|
"""Generates RNN-LSTM model
|
||||||
:param input_shape (tuple): Shape of input set
|
:param input_shape (tuple): Shape of input set
|
||||||
:return model: RNN-LSTM model
|
:return model: RNN-LSTM model
|
||||||
@ -101,29 +88,39 @@ def build_model(input_shape, nr_classes=5):
|
|||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
def train(model, batch_size, epochs, X_train, X_validation, y_train, y_validation):
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
# get train, validation, test splits
|
|
||||||
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets(0.25, 0.2)
|
|
||||||
|
|
||||||
print(X_train.shape[1], X_train.shape[2])
|
|
||||||
# create network
|
|
||||||
|
|
||||||
input_shape = (X_train.shape[1], X_train.shape[2]) # (~2800), 1, 208
|
|
||||||
model = build_model(input_shape)
|
|
||||||
|
|
||||||
# compile model
|
|
||||||
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
|
optimiser = keras.optimizers.Adam(learning_rate=0.0001)
|
||||||
model.compile(optimizer=optimiser,
|
model.compile(optimizer=optimiser,
|
||||||
loss='sparse_categorical_crossentropy',
|
loss='sparse_categorical_crossentropy',
|
||||||
metrics=['accuracy'])
|
metrics=['accuracy'])
|
||||||
|
|
||||||
|
history = model.fit(X_train,
|
||||||
|
y_train,
|
||||||
|
validation_data=(X_validation, y_validation),
|
||||||
|
batch_size=batch_size,
|
||||||
|
epochs=epochs)
|
||||||
|
return history
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
# Load data
|
||||||
|
X, y = load_data_from_json(DATA_PATH_MFCC)
|
||||||
|
|
||||||
|
# Get prepared data: train, validation, and test
|
||||||
|
X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets_percentsplit(X, y,
|
||||||
|
validation_size=0.2,
|
||||||
|
test_size=0.25,
|
||||||
|
shuffle_vars=True)
|
||||||
|
#print(X_train.shape[1], X_train.shape[2])
|
||||||
|
|
||||||
|
# Make model
|
||||||
|
model = RNN_LSTM(input_shape=(1, 208))
|
||||||
model.summary()
|
model.summary()
|
||||||
|
|
||||||
# train model
|
# Train network
|
||||||
history = model.fit(X_train, y_train, validation_data=(X_validation, y_validation), batch_size=64, epochs=30)
|
history = train(model, X_train, X_validation, y_train, y_validation, batch_size=64, epochs=30)
|
||||||
|
|
||||||
# plot accuracy/error for training and validation
|
# plot accuracy/error for training and validation
|
||||||
plot_history(history)
|
plot_history(history)
|
||||||
|
|
||||||
|
17
README.md
17
README.md
@ -17,9 +17,9 @@ Scripts to handle CSV files composed by 2 * 8 EMG sensors(left & right) devided
|
|||||||
|
|
||||||
#### Credits for insporational code
|
#### Credits for insporational code
|
||||||
|
|
||||||
* Kapre - Keunwoochoi
|
* Kapre: Keunwoochoi
|
||||||
* Audio-Classification: seth814
|
* Audio-Classification: seth814
|
||||||
* DeepLearningForAudioWithPyhton - musikalkemist
|
* DeepLearningForAudioWithPyhton: musikalkemist
|
||||||
|
|
||||||
## Table of Contents
|
## Table of Contents
|
||||||
|
|
||||||
@ -31,7 +31,16 @@ Scripts to handle CSV files composed by 2 * 8 EMG sensors(left & right) devided
|
|||||||
| Neural_Network_Analysis.py | Contains functions to load, build and execute analysis with Neural Networks. Main functions are <br>load_data_from_json(), build_model(), and main() |
|
| Neural_Network_Analysis.py | Contains functions to load, build and execute analysis with Neural Networks. Main functions are <br>load_data_from_json(), build_model(), and main() |
|
||||||
|
|
||||||
|
|
||||||
|
## How to use it
|
||||||
|
|
||||||
|
1. Clone the repo
|
||||||
|
2. Place the data files in the working directory
|
||||||
|
3. (For now) Add the session filenames in the desired load_data() function
|
||||||
|
4. Assuming NN analysis:
|
||||||
|
1. Create `CSV_handler` object
|
||||||
|
2. Load data with `load_data(CSV_handler, <datatype>)`
|
||||||
|
3. Create `NN_handler` object with <CSV_handler> as input
|
||||||
|
4. Load MFCC data into the `NN_handler` with `store_mfcc_samples()`
|
||||||
|
5. Run `save_json_mfcc()`
|
||||||
|
6. Run `Neural_Network_Analysis.py`
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user