
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/345641555

Using WireGuard VPN

Article · November 2020

CITATIONS

0
READS

461

1 author:

Some of the authors of this publication are also working on these related projects:

Docker Script Framework View project

Misc Tips and Tricks View project

Dashamir Hoxha

Universiteti Vlores

54 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dashamir Hoxha on 09 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/345641555_Using_WireGuard_VPN?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/345641555_Using_WireGuard_VPN?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Docker-Script-Framework?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Misc-Tips-and-Tricks?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiteti-Vlores?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-e9e66cd138595ca3d1054b720553a284-XXX&enrichSource=Y292ZXJQYWdlOzM0NTY0MTU1NTtBUzo5NTYwNjcyNDA1MDUzNDVAMTYwNDk1NTYwMTI0MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 1/11

Using WireGuard VPN
1. Introduction
WireGuard is a simple, fast and modern VPN that utilizes state-of-the-art cryptography. It is quite
flexible and can be used in many situations.

In this article we will see how to install a WireGuard server with Docker and docker-scripts, and
some of the usecases that are supported by it (which hopefully are the most important ones).

These scripts are meant to install WireGuard on a server with a public IP (for example a VPS on
the cloud), and to generate and offer configurations to clients that don't have a public IP (are
behind NAT).

Some of the usecases supported by this server are:

1. Securing connections to the Internet
2. Creating a Virtual Private LAN
3. Routing between remote private LANs
4. Accessing clients from a cloud server

2. Installing and using a WireGuard server

2.1. Install Docker and docker-scripts

Installation of the WireGuard server is based on Docker and docker-scripts, so let's install these
first.

1. Install Docker:

curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

2. Install docker-scripts:

apt install git make m4

git clone https://gitlab.com/docker-scripts/ds /opt/docker-scripts/ds

cd /opt/docker-scripts/ds/

make install

2.2. Install the WireGuard container

1. Get the scripts and initialize a directory for the container:

ds pull wireguard

ds init wireguard @wireguard

cd /var/ds/wireguard/

https://www.wireguard.com/
https://gitlab.com/docker-scripts/ds
https://gitlab.com/docker-scripts/ds#installation

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 2/11

2. Edit settings.sh and make sure that the values of the settings are right. We will see later
what are the right settings for each case.

3. Run ds make to build, create and configure the container.

2.3. Create client configurations

ds client add client1 192.168.100.1

ds client add client2 192.168.100.2

ds client add client3 10.0.0.3

ds client add client4 10.0.0.4 192.168.1.0/24

ds client ls

ls clients/

Notice that:

IPs of the clients don't have to be on the same network.
Besides the client name and the client IP we can also give a network as a third argument. We
will see later when and why this is needed.
The configuration files of the clients are saved on the directory clients/ .

2.4. Send configuration files to each client

There are several ways to do it:

Using a QR code (useful if the client is your smartphone):

ds share qr client1

Using Tor:

ds share tor client2

Use a Tor Browser on the client side to download this configuration file.

Using https:

ds share www client3

ds share www client4

ls www/

On the client side use a command like this to get the config file:

wget --no-check-certificate -O client3.conf \

 https://11.12.13.14:4343/clients/client3.conf.HjamzWEpWW6z4LT

To stop sharing by www run:

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 3/11

ds share www stop

2.5. Start the VPN connection on the clients

On each client do these:

1. Install WireGuard. For example, if it is Debian/Ubuntu install it like this:

apt install wireguard

If the client is a RaspberryPi, you also have to install raspberrypi-kernel-headers and
then reboot:

apt install raspberrypi-kernel-headers

reboot

2. Test the configuration file:

wg-quick up ./client1.conf

ip addr

ping 8.8.8.8

traceroute 8.8.8.8

curl ifconfig.co

wg-quick down ./test2.conf

3. Start the VPN connection as a service:

mv client1.conf /etc/wireguard/wg0.conf

systemctl enable wg-quick@wg0

systemctl start wg-quick@wg0

systemctl status wg-quick@wg0

ip addr

ping 8.8.8.8

traceroute 8.8.8.8

curl ifconfig.co

3. Usecase #1: Secure connection to the Internet
This is maybe the most popular reason why people want to use a VPN. If you are connected to an
unknown WiFi hotspot (one that it is not under your control), it is quite possible that someone may
try to eavesdrop your communications, and maybe try to hack you. The recommended solution is
to use a VPN for connecting to the Internet.

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 4/11

Figure 1: A VPN tunnel to the internet

For this case the settings should be like this:

ROUTED_NETWORKS="0.0.0.0/0"

DNS_SERVERS="176.103.130.130, 176.103.130.131"

ALLOW_INTERNET_ACCESS=yes

CLIENT_TO_CLIENT=no

KEEPALIVE_PERIOD=0

By the way, these are the default values on settings.sh .

Let's discuss their meaning:

1. The setting ROUTED_NETWORKS="0.0.0.0/0" tells the client to route everything to the
wireguard interface (wg0). So, all the internet traffic will go through the WG tunnel.

2. DNS_SERVERS="176.103.130.130, 176.103.130.131" tells the client which DNS servers
to use. You can use your preferred DNS servers here. The client can also change his
configuration file and customize the DNS servers.

3. When ALLOW_INTERNET_ACCESS=yes then these firewall rules will be added on the server:

iptables -I FORWARD -i wg0 -j ACCEPT

iptables -t nat -I POSTROUTING -o eth0 -j MASQUERADE

This allows the WG server to behave as a NAT server for the clients, providing them access
to internet.

4. The setting CLIENT_TO_CLIENT=no tells the server to block the connections between the
clients. This is achieved with a firewall rule like this:

iptables -I FORWARD -i wg0 -o wg0 -j DROP

This is what you usually want when using VPN for secure access to the Internet. However if
all the clients belong to you, and you would prefer them to be able to access each-other, then
change it to CLIENT_TO_CLIENT=yes .

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 5/11

5. The setting KEEPALIVE_PERIOD makes the client to send periodically a packet to the server.

WG by default sends data only when there is anything to send. When client sends no data for
some time, the NAT (behind which the client is) terminates the session, and the connection to
the server (and to the other clients) is lost. Usually this is fine, because the connection will be
established again when the client needs to access the internet. So, the
setting KEEPALIVE_PERIOD=0 (which disables the keepalive feature) is OK.

However, if the clients want to communicate with each-other
(setting CLIENT_TO_CLIENT=yes above), it is important that each client keeps the
connection to the server alive, so that it can be reached by the other clients when they want
to access it. In this case, 25 seconds is a good value for KEEPALIVE_PERIOD .

For testing this usecase see:

Test #1: Accessing the internet from a WG client
Test #2: Two clients cannot ping each-other
Test #3: Two clients can ping each-other

4. Usecase #2: Virtual Private LAN
In this case there are several computers distributed all over the internet, and we want them to
communicate with each-other safely and securely, as if they are in a private LAN.

Figure 2: Virtual Private LAN

https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-1-accessing-the-internet-from-a-wg-client
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-2-two-clients-cannot-ping-each-other
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-3-two-clients-can-ping-each-other

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 6/11

This is an important usecase that facilitates remote collaboration of distributed teams, remote
education, etc.

The settings for this case should be like this:

ROUTED_NETWORKS="192.168.10.0/24"

ALLOW_INTERNET_ACCESS=no

CLIENT_TO_CLIENT=yes

KEEPALIVE_PERIOD=25

1. The first setting will tell the clients to route the traffic for 192.168.10.0/24 through the WG
interface. All the rest of the traffic will go through the normal gateway.

2. The setting ALLOW_INTERNET_ACCESS=no tells the server to block the internet access from
the clients. So, even if the clients change manually the first setting on their configuration
to AllowedIPs = 0.0.0.0/0 , trying to route everything through the WG interface, they still
will not be able to have internet access.

3. The third setting makes sure that the clients can ping and access each-other (otherwise it
wouldn't be a virtual LAN).

4. The last setting tells the clients to send a keep-connection-alive package every 25 seconds.
This prevents the NAT sessions from expiring and makes sure that each client can be
accessed from the other clients at any time.

For testing this usecase see: Test #4: Virtual private LAN

An example of this usecase is also described in this article: Distributed Computer Lab

5. Usecase #3: Routing between remote private LANs
This case is an extension of the second case above, in the sense that not only the WG clients can
communicate with each-other, but also the other clients on their LANs can communicate with each-
other.

https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-4-virtual-private-lan
https://www.researchgate.net/publication/345485273_Distributed_Computer_Lab

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 7/11

Figure 4: Routing between remote private LANs

For example from Client3 and Client4 we can ping to Client5 and Client6 (and the other way
around), with the network traffic being routed safely through WG clients and the WG server.

This usecase might be useful for companies that have branches on remote locations. When the
number of computers to be connected is big and dynamic (new computers may be added
frequently), routing between two LANs is more practical than making each computer a WG client.

The steps to setup this case are these:

1. Edit settings.sh like this:

ROUTED_NETWORKS="192.168.11.0/24, 192.168.12.0/24"

ALLOW_INTERNET_ACCESS=no

CLIENT_TO_CLIENT=yes

KEEPALIVE_PERIOD=25

ROUTED_NETWORKS should contain at least all the LANs that will be connected, but you may
also add 10.100.100.1/32 (the IP of the WG server), 192.168.10.0/24 (the network of
the WG clients), etc.

2. When adding client configurations on the server, give also the LAN that is going to use this
client as a gateway, like this:

ds client add client1 192.168.10.1 192.168.11.0/24

ds client add client2 192.168.10.2 192.168.12.0/24

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 8/11

This will tell the WG server to allow the traffic from these networks.

3. We also need to add proper routes to Client3, Client4, Client5, Client6, etc. For example, on
Client3 we should add this route:

ip route add to 192.168.12.0/24 via 192.168.11.2

On Client5 we should add a route like this:

ip route add to 192.168.11.0/24 via 192.168.12.2

For testing this usecase see: Test #5: Routing between two LANs

5.1. A simpler setup for Usecase#3

Another way, a bit more convenient, might be to use the command ds setup router , like this:

ds setup router \

 client1:192.168.10.1:192.168.11.0/24 \

 client2:192.168.10.2:192.168.12.0/24

This will both modify settings.sh with the right value of ROUTED_NETWORKS (and other proper
settings), and will create the client configurations as above.

However you still need to add the routes to the non-WG clients, as shown above.

5.2. An alternative configuration for Usecase#3

If we want all the clients to access the internet through the WG server (besides accessing each-
other), then the setup should be like this:

1. Edit settings.sh like this:

ROUTED_NETWORKS="0.0.0.0/0"

ALLOW_INTERNET_ACCESS=yes

CLIENT_TO_CLIENT=yes

KEEPALIVE_PERIOD=25

2. Create client configurations like this:

ds client add client1 192.168.10.1 192.168.11.0/24

ds client add client2 192.168.10.2 192.168.12.0/24

3. Add default routes to clients, like this:

on Client3 and Client4

ip route add to default via 192.168.11.2

https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-5-routing-between-two-lans

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 9/11

on Client5 and Client6

ip route add to default via 192.168.12.2

6. Usecase #4: Accessing clients from a cloud server
In this case we want the clients and a containerized application on the cloud to be able to access
each-other, but the clients themselves should not be able to access each-other. This situation is
represented on the diagram:

Figure 5: Accessing clients from a cloud server

This case might be useful if we have for example a containerized Guacamole server (on Client3)
and want to access from it some machines that are located on private networks (Client1 and
Client2).

The steps to setup this case are these:

1. Edit settings.sh like this:

ROUTED_NETWORKS="172.24.0.0/16"

ALLOW_INTERNET_ACCESS=no

CLIENT_TO_CLIENT=no

KEEPALIVE_PERIOD=25

ROUTED_NETWORKS contains the docker LAN where the WG container and the Guacamole
container are located.

2. Create client configurations on the server:

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 10/11

ds client add client1 192.168.10.1

ds client add client2 192.168.10.2

3. So far Client1 and Client2 can ping to Client3 (172.24.0.3), but Client3 cannot ping back
to them (to 192.168.10.1 and to 192.168.10.2). In order to fix this, add this route to
Client3:

ip route add to 192.168.10.0/24 via 172.24.0.2

Note also that Client1 and Client2 cannot ping to each-other or the WG server, and this is ensured
by the setting CLIENT_TO_CLIENT=no .

6.1. Usecase #4.1: Accessing LANs as well from a cloud server

Sometimes it may be more convenient to access from the server the LANs behind the WG clients
as well. For example in the following diagram we want Client3 and Client4 to be able to access
each-other:

Figure 6: Accessing LANs from a cloud server

The setup for this case is almost the same as with the previous case, with these small
modifications:

11/9/2020 Using WireGuard VPN – Dashamir Hoxha

dashohoxha.fs.al/using-wireguard-vpn/ 11/11

1. When creating clients we also give the LANs that should be allowed by the WG server, like
this:

ds client add client1 192.168.10.1 192.168.11.0/24

ds client add client2 192.168.10.2 192.168.12.0/24

2. On Client3 we should add these routes as well:

ip route add to 192.168.11.0/24 via 172.24.0.2

ip route add to 192.168.12.0/24 via 172.24.0.2

3. On Client4 (and similarly to the other LAN clients) we should add a route like this:

ip route add to 172.24.0.0/16 via 192.168.11.2

For testing this usecase see: Test #6: Accessing clients from a cloud server

An example of this usecase is also described in this article: Accessing Computer Labs Remotely

View publication statsView publication stats

https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-6-accessing-clients-from-a-cloud-server
https://www.researchgate.net/publication/345404166_Accessing_Computer_Labs_Remotely
https://www.researchgate.net/publication/345641555

