
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339954478

A Performance Comparison of WireGuard and OpenVPN

Poster · March 2020

DOI: 10.1145/3374664.3379532

CITATION

1
READS

337

5 authors, including:

Yuan Cheng

California State University, Sacramento

18 PUBLICATIONS 352 CITATIONS

SEE PROFILE

All content following this page was uploaded by Yuan Cheng on 06 July 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/339954478_A_Performance_Comparison_of_WireGuard_and_OpenVPN?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/339954478_A_Performance_Comparison_of_WireGuard_and_OpenVPN?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Cheng-13?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Cheng-13?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/California-State-University-Sacramento?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Cheng-13?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuan-Cheng-13?enrichId=rgreq-3f8e0a9287a831a1584b5cebd33d44e7-XXX&enrichSource=Y292ZXJQYWdlOzMzOTk1NDQ3ODtBUzoxMDQyNTE0MDU2MzI3MTY4QDE2MjU1NjYxMjg2NTI%3D&el=1_x_10&_esc=publicationCoverPdf

A Performance Comparison of WireGuard and OpenVPN
Steven Mackey
smackey@csus.edu

California State University,
Sacramento

Sacramento, CA

Ivan Mihov
ivanmihov@csus.edu

California State University,
Sacramento

Sacramento, CA

Alex Nosenko
anosenko@csus.edu

California State University,
Sacramento

Sacramento, CA

Francisco Vega
fvega@csus.edu

California State University,
Sacramento

Sacramento, CA

Yuan Cheng
yuan.cheng@csus.edu

California State University,
Sacramento

Sacramento, CA

ABSTRACT
A fundamental problem that confronts virtual private network
(VPN) applications is the overhead on throughput, ease of deploy-
ment and use, and overall utilization. WireGuard is a recently in-
troduced light and secure cross-platform VPN application. It aims
to simplify the process of setting up a secure connection, while
utilizing the multi-threading capability and minimizing the use
of bandwidth. There have been several follow-up studies on Wire-
Guard since its birth, most of which focus on the security analysis of
the protocol. Despite the author’s claim that WireGuard has impres-
sive wins over OpenVPN and IPsec, there is no rigorous analysis
on its performance to date. This paper presents a performance
comparison of WireGuard and its main rival OpenVPN on various
metrics. We construct an automated test framework and deploy it
on a total of eight nodes, including remote AWS instances and local
virtual machines. Our test results clearly show two main edges
that WireGuard has over OpenVPN, its performance on multi-core
machines and its light codebase.

CCS CONCEPTS
• Security and privacy → Cryptography; • Networks →

Network performance analysis; Network layer protocols.
KEYWORDS

Virtual private networks, Performance analysis, OpenVPN

ACM Reference Format:
StevenMackey, IvanMihov, Alex Nosenko, Francisco Vega, and Yuan Cheng.
2020. A Performance Comparison ofWireGuard and OpenVPN. InCODASPY
’20: ACM Conference on Data and Application Security and Privacy, March
16–18, 2020, New Orleans, LA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
WireGuard [2] is a relatively new product on the mature market of
Virtual Private Networks (VPNs). Its main goal is to simplify the
process of establishing a secure connection by minimizing the over-
complications that other options have, such as OpenVPN [8], and
provide better resource utilization. To establish a VPN connection,
users must exchange public keys, and the rest is handled by Wire-
Guard. Users do not have to manage connections, states, or even
daemons. Recent studies have been focused on the cryptographic
analysis of the WireGuard protocol, including its correctness and
several other security properties [3, 5, 7].

The authors of WireGuard claimed that it, in theory, should
achieve very high performance and an unoptimized WireGuard
already has impressive wins over OpenVPN and IPsec. However,
we are not aware of supporting evidences from an objective third
party. In this paper, we aim to provide a performance analysis on
WireGuard and its main rival on the market, OpenVPN. To the best
of our knowledge, this is the first performance study on WireGuard
from an unbiased view.

2 DEPLOYMENT
For the performance evaluation, we need a modular and easy way
of deploying WireGuard and OpenVPN over multiple hosts, with
minimal manual configuration. Since the evaluated VPN solutions
have vastly different design choices, we decide to use Ansible [1] as
our software provisioning tool. Ansible provides us with flexibility
and allows a single command to install, configure, run, and connect
both VPN solutions. We develop separate Ansible roles for each
VPN and tie them together in a playbook.

WireGuard installs from source in a matter of seconds. It comes
with a utility for generating the needed keys, making the deploy-
ment quick and effortless. In WireGuard, the notion of server and
client is not present, as every host is considered a peer, and we
require one configuration file shared among peers.

OpenVPN, on the other hand, has a much larger footprint and
makes the installation slower and more convoluted. Developing the
automation role for OpenVPN is complex, because it requires the
generation of separate configuration files for servers and clients.

Overall, we are able to completely automate the process of in-
stallation, configuration, and establishing a connection using both
VPN packages; however, the WireGuard automation role, with its

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CODASPY ’20, March 16–18, 2020, New Orleans, LA Mackey and Mihov, et al.

100 lines of code, takes considerably less effort to develop than the
three times longer OpenVPN role.

Our initial deployment is done on two AWS t2.micro instances
in two different regions - California (CA) and Ohio (OH). We even-
tually decide to expand our testing setup and include six additional
nodes for a total of eight hosts. Table 1 shows all nodes used and
their specifications.

Table 1: Description of The Nodes Used

of
nodes

Type Location CPU
cores

RAM
(GB)

VM

2 AWS OR 1 1 Y
1 AWS CA 1 1 Y
1 AWS OH 1 1 Y
1 AWS SG 1 1 Y
2 Ubuntu CA 1 2 Y
1 Centos CA 4 8 N

3 METHODOLOGY
To perform a comprehensive evaluation, we opt to test in two envi-
ronments: AWS and local virtual machines. These environments
will be described in detail in Section 4. Each environment consists
of two nodes with one node acting as a server (i.e., listening on a
TCP/UDP socket) and the other acting as a client. For each envi-
ronment, we deploy WireGuard and OpenVPN using our custom
Ansible playbooks. With the VPNs deployed, we then run our test
framework. After establishing these baseline metrics, we turn to
more in-depth performance analysis.

With reproducability in mind, we construct an automated test
framework, which leverages iperf3 [4] as well as Python’s psutil
library [6]. The framework is deployed to our test nodes and in-
voked (in either server or client mode) via an ssh connection from
a third node (a personal laptop). The results are then parsed and
converted into JSON format, which can be eventually summarized
into an easily interpreted breakdown. This allows us to rapidly test
on disparate environments in a reproducible manner.

4 RESULTS AND ANALYSIS
For all test cases, we run for a duration of 60 seconds, unless other-
wise noted.

4.1 AWS
The AWS short-haul testing is conducted on two micro instances
both deployed in Oregon (OR). At the beginning, we notice that
the throughput is very low for all nodes. Upon further inspection,
we discover that the sustained TCP connections are being throttled.
In order to account for this, we have to drastically reduce our
testing duration from 60 seconds to 10 seconds. Figures 1, 2, and
3 give a breakdown of the short-haul results. Interestingly, UDP
performance is much lower than TCP in all cases. Our best guess
is that this is more AWS interference. Despite AWS meddling in
our tests, we begin to see that WireGuard has clear advantages
over OpenVPN. While the results lean in favor of WireGuard, we

choose to rely more on our local VM testing, due to the fear that the
reduced test duration would be too ‘noisy’, and due to the strange
behaviour of AWS interfering in the testing.

Figure 1: AWS Short-haul Server CPU Usage.

Figure 2: AWS Short-haul Server RTT.

Figure 3: AWS Short-haul Server Throughput.

4.2 Local VM
Our second test environment consists of two Ubuntu virtual ma-
chines co-located on the same host. Each virtual machine is allo-
cated 1GB of RAM and 1 virtual CPU. Our rationale behind this

A Performance Comparison of WireGuard and OpenVPN CODASPY ’20, March 16–18, 2020, New Orleans, LA

test is that we can give a fair test between the VPNs, which would
be limited by CPU rather than the network interface controller
capacity. The results are largely in line with the AWS environment
results, as shown in Figures 4, 5, and 6. At this point, it is clear that
WireGuard outperforms OpenVPN in every regard. It is also obvious
that WireGuard performs worse than regular sockets, though this
is expected. With our baseline results established, we move on to
find out why WireGuard performs so much better than OpenVPN.

Figure 4: Local VM Server CPU Usage.

Figure 5: Local VM Server RTT.

4.3 Multi-threaded vs. Single-threaded
Webegin our further testing by heuristically confirming the fact that
OpenVPN is single-threaded and that WireGuard is multi-threaded.
We do this by provisioning our VMs with two cores each and re-
running our test framework. The results show that WireGuard
can scale effectively with core count, while OpenVPN cannot. This
implies that OpenVPN is more dependent on raw clock speed than
WireGuard, given that more cores are available.

We now provision our VMs with one core each, and re-run our
framework, this time keeping track of the number of system-level
context switches, as well as the top five processes sorted by the
number of context switches. Surprisingly, WireGuard has far more
context switches than OpenVPN, with the WireGuard workers
still accounting for the majority of switches. This is contrary to

Figure 6: Local VM Server Throughput.

our original assumption that it was context switching that gives
WireGuard an edge over OpenVPN.

5 FUTUREWORK
There is plenty of more research that can be done on this topic.

• It would be beneficial to test on Windows, iOS, and Android
platforms, since the growing amount of Internet users from
portable devices.

• It would be interesting to test WireGuard again when it will
be mainlined into Linux kernel version 5.6 in 2020.

• We would like to dig deeper into why WireGuard outper-
forms OpenVPN even on single-core machines.

6 CONCLUSION
Our test results clearly showed the edge that WireGuard has over
OpenVPN. It certainly performed better on multi-core machines,
where it was able to take full advantage of multi-threading. Wire-
Guard consistently beat OpenVPN in all the testing setups. Another
advantage lies within its codebase. Lean and light by design, Wire-
Guard is implemented in just over 4000 lines of code, whichwill ease
auditing and vulnerability finding. It also helps to make the attack
surface smaller in comparison to the 60,000 lines of the OpenVPN
implementation. Overtime, WireGuard has a chance of becoming a
real competitor and occupying a larger share of the market.

REFERENCES
[1] Michael DeHaan. 2012. Ansible. https://www.ansible.com/.
[2] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network Tunnel..

In NDSS.
[3] Benjamin Dowling and Kenneth G Paterson. 2018. A cryptographic analysis of

the WireGuard protocol. In International Conference on Applied Cryptography and
Network Security. Springer, 3–21.

[4] Jon Dugan, Seth Elliott, Bruce A Mah, Jeff Poskanzer, and Kaustubh Prabhu. 2014.
iPerf3, tool for active measurements of the maximum achievable bandwidth on IP
networks. https://iperf.fr/.

[5] Benjamin Lipp, Bruno Blanchet, and Karthikeyan Bhargavan. 2019. A mechanised
cryptographic proof of the WireGuard virtual private network protocol. (2019).

[6] Giampaolo Rodola. 2016. Psutil package: a cross-platform library for retrieving
information on running processes and system utilization. https://pypi.org/project/
psutil/.

[7] Peter Wu. 2019. Analysis of the WireGuard protocol. (2019).
[8] James Yonan. 2001. OpenVPN. https://openvpn.net/.

View publication statsView publication stats

https://www.ansible.com/
https://iperf.fr/
https://pypi.org/project/psutil/
https://pypi.org/project/psutil/
https://openvpn.net/
https://www.researchgate.net/publication/339954478

	Abstract
	1 Introduction
	2 Deployment
	3 Methodology
	4 Results and Analysis
	4.1 AWS
	4.2 Local VM
	4.3 Multi-threaded vs. Single-threaded

	5 Future Work
	6 Conclusion
	References

