
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348734501

Using WireGuard VPN

Presentation · February 2021

DOI: 10.13140/RG.2.2.21527.60328

CITATIONS

0
READS

232

1 author:

Some of the authors of this publication are also working on these related projects:

Docker Script Framework View project

101 Problema Programimi View project

Dashamir Hoxha

Universiteti Vlores

54 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Dashamir Hoxha on 24 January 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348734501_Using_WireGuard_VPN?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348734501_Using_WireGuard_VPN?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Docker-Script-Framework?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/101-Problema-Programimi?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiteti-Vlores?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dashamir-Hoxha?enrichId=rgreq-1d8de625252a5cb704b4ab5582f39089-XXX&enrichSource=Y292ZXJQYWdlOzM0ODczNDUwMTtBUzo5ODM1NjY4MjU1NjIxMTJAMTYxMTUxMjAxMzcwMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


FOSSDEM 2021
Workshop

Using the WireGuard VPN
http://dashohoxha.fs.al/using-wireguard-vpn/

Dashamir Hoxha
dashohoxha@gmail.com



About WireGuard

WireGuard is a simple, fast and modern VPN that utilizes state-of-the-art 
cryptography. It is quite flexible and can be used in many situations.

● Simple & Easy-to-use
● Cryptographically Sound
● Minimal Attack Surface
● High Performance
● Well Defined & Thoroughly Considered

For more details have a look at its page: https://www.wireguard.com/

https://www.wireguard.com/


Install a WireGuard Server in a Docker container

We will install a WireGuard server with Docker and docker-scripts:

1. Install Docker
2. Install docker-scripts:

    apt install git make m4
    git clone \
          https://gitlab.com/docker-scripts/ds \
          /opt/docker-scripts/ds
    cd /opt/docker-scripts/ds/
    make install

3. Install the WireGuard container:
    ds pull wireguard
    ds init wireguard @wireguard
    cd /var/ds/wireguard/
    vim settings.sh
    ds make

https://gitlab.com/docker-scripts/ds


Settings of the WG container (on settings.sh)

➢ ROUTED_NETWORKS="0.0.0.0/0"
Tells the client what to route to the WG interface.
In this case all the internet traffic will go through the WG tunnel.

➢ DNS_SERVERS="176.103.130.130, 176.103.130.131"
Tells the client which DNS servers to use. You can use your preferred DNS servers 
here.

➢ ALLOW_INTERNET_ACCESS=yes
Allows the WG server to behave as a NAT server for the clients, providing them 
access to the Internet.

➢ CLIENT_TO_CLIENT=no
Tells the server to block the connections between the clients.

➢ KEEPALIVE_PERIOD=0
Disables the keepalive feature, which makes the client to send periodically a packet to 
the server. Usually 25 is a good value for it.



Test the WireGuard server

1. Create client configurations on the WG server:
    ds client add client1 192.168.100.1
    ds client add client2 192.168.100.2

2. Send configuration files to each client
    ds share www client1
    ds share www client2

3. Get config file on the client:
    wget --no-check-certificate -O client1.conf \
        https://11.12.13.14:4343/clients/client1.conf.HjamzWEpWW6z4LT

4. Test the VPN connection on the client:
    apt install wireguard
    wg-quick up ./client1.conf
    curl ifconfig.co
    wg-quick down ./client1.conf

5. Start the VPN connection as a service:
    mv client1.conf /etc/wireguard/wg0.conf
    systemctl enable wg-quick@wg0
    systemctl start wg-quick@wg0
    curl ifconfig.co



WireGuard Usecases

Some of the usecases supported by this WG server are:

1. Securing connections to the Internet
2. Creating a Virtual Private LAN
3. Routing between remote private LANs
4. Accessing clients from a cloud server



Usecase #1: Secure connection to the Internet

This is maybe the most popular reason why people want to use a VPN. If you are 
connected to an unknown WiFi hotspot (one that it is not under your control), it is 
quite possible that someone may try to eavesdrop your communications, and maybe 
try to hack you. The recommended solution is to use a VPN for connecting to the 
Internet.



Usecase #2: Virtual Private LAN

In this case there are several computers distributed all over the internet, and we want 
them to communicate with each-other safely and securely, as if they are in a private LAN.

ROUTED_NETWORKS="192.168.10.0/24"
ALLOW_INTERNET_ACCESS=no
CLIENT_TO_CLIENT=yes
KEEPALIVE_PERIOD=25



Usecase #3: Routing between remote private LANs

This case is an extension of 
the second case, in the 
sense that not only the WG 
clients can communicate 
with each-other, but also the 
other clients on their LANs 
can communicate with 
each-other.

ROUTED_NETWORKS="
192.168.11.0/24, 192.168.12.0/24"
ALLOW_INTERNET_ACCESS=no
CLIENT_TO_CLIENT=yes
KEEPALIVE_PERIOD=25



Usecase #4: Accessing clients from a cloud server

In this case we want the clients 
and a containerized application 
on the cloud to be able to access 
each-other, but the clients 
themselves should not be able to 
access each-other.

ROUTED_NETWORKS="172.24.0.0/16"
ALLOW_INTERNET_ACCESS=no
CLIENT_TO_CLIENT=no
KEEPALIVE_PERIOD=25



Usecase#4 example:
    Remote access to Computer Labs, with Guacamole server on a VPS on the cloud

See: http://dashohoxha.fs.al/accessing-computer-labs-remotely/

http://dashohoxha.fs.al/accessing-computer-labs-remotely/


Testing the usecases of the WG server

Using Docker and docker-scripts we create virtual environments 
for testing the different usecases of the WireGuard server.

➔ Test #1: Accessing the internet from a WG client
➔ Test #2: Two clients cannot ping each-other
➔ Test #3: Two clients can ping each-other
➔ Test #4: Virtual private LAN
➔ Test #5: Routing between two LANs
➔ Test #6: Accessing clients from a cloud server

https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-1-accessing-the-internet-from-a-wg-client
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-2-two-clients-cannot-ping-each-other
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-3-two-clients-can-ping-each-other
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-4-virtual-private-lan
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-5-routing-between-two-lans
https://gitlab.com/docker-scripts/wireguard/-/tree/master/testing#test-6-accessing-clients-from-a-cloud-server


Test #1: Accessing the internet from a WG client

The first test is related to the Usecase #1, where 
a WG client can access the internet through a 
secure connection to the WG server.

apt install highlight expect
./test1.sh

The default settings of the server are OK, so we 
don't need to modify them. After creating 
configuration files (for the client and for the 
server), we go to client1 and:

1. start up the interface wg0
2. test the connection to the WG server
3. test the connection to the internet



Test #2: Two clients cannot ping each-other

This test is related to the Usecase #1, where a 
WG client can access the internet through a 
secure connection to the WG server. By default, 
two different clients cannot ping each-other. 
The setting CLIENT_TO_CLIENT by default is 
commented out (which means disabled).

The default settings of the server are OK, so we 
don't need to modify them. After creating 
configuration files:

1. start up wg0 on client1
2. start up wg0 on client2
3. try to ping from client1 to client2
4. try to ping from client2 to client1



Test #3: Two clients can ping each-other

This test is related to a customized version of 
Usecase #1, where WG clients can also ping 
each-other, besides accessing the internet 
through the WG server. This requires the 
setting CLIENT_TO_CLIENT=yes (enabled).

Test steps:
1. set CLIENT_TO_CLIENT=yes on the 

server
2. generate configuration files
3. start up wg0 on client1
4. start up wg0 on client2
5. ping from client1 to client2
6. ping from client2 to client1



Test #4: Virtual private LAN

This test is related to the Usecase #2, 
where clients can access each-other, 
but cannot access the internet 
through the WG interface (because of 
the setting 
ALLOW_INTERNET_ACCESS=no).

Settings:

ROUTED_NETWORKS="10.100.100.1, 
192.168.100.0/24"
ALLOW_INTERNET_ACCESS=no
CLIENT_TO_CLIENT=yes
KEEPALIVE_PERIOD=25



Test #5: Routing between two LANs

This test is related to the Usecase 
#3, where clients on two different 
private LANs, can access each-other 
through the WG network.

Settings:

ROUTED_NETWORKS="10.100.100
.1/32, 192.168.100.0/24, 
172.25.0.0/16, 
172.26.0.0/16"
ALLOW_INTERNET_ACCESS=no
CLIENT_TO_CLIENT=yes
KEEPALIVE_PERIOD=25



Test #6: Accessing clients from a cloud server

This test is related to Usecase #4, 
where a containerized application on 
the cloud, which is located on the 
same docker network as the WG 
server, can access clients that don't 
have a public IP. At the same time, 
clients can access the application, 
but not each-other.

Settings:

ROUTED_NETWORKS="10.100.100
.1, 172.24.0.0/16"
ALLOW_INTERNET_ACCESS=no
CLIENT_TO_CLIENT=no
KEEPALIVE_PERIOD=25



Thank you for your attention!

Any questions or comments?

View publication statsView publication stats

https://www.researchgate.net/publication/348734501

