135 lines
3.7 KiB
Matlab
135 lines
3.7 KiB
Matlab
function [conver_result,Final_result,all_result]=imayfly_process(datapass,pop_size,no_of_iter)
|
|
|
|
traindata=datapass{1};
|
|
traindata_matrix=cell2mat(traindata);
|
|
len_data=max(max(traindata_matrix));
|
|
max_val1=1;
|
|
min_val1=0;
|
|
dim=len_data;
|
|
max_range=[repmat(max_val1,[1 dim])];
|
|
min_range=[repmat(min_val1,[1 dim])];
|
|
len=length(max_range);
|
|
int_pos_data=init_pop_data(pop_size,len,max_range,min_range);
|
|
data_pass_to{1}=[];
|
|
for indr=1:pop_size
|
|
dataele=(int_pos_data(indr,:));
|
|
dataele=limit_chk_process(dataele,...
|
|
max_val1,min_val1,data_pass_to);
|
|
elechoose=dataele;
|
|
obj_result=objective_process(datapass,elechoose);
|
|
int_pos_data(indr,:)=dataele;
|
|
fitness(indr)=obj_result{1};
|
|
finalall{indr}=obj_result;
|
|
end
|
|
[maxval,maxloc]=max(fitness);
|
|
bestdata=int_pos_data(maxloc(1),:);
|
|
bestfit=maxval;
|
|
xg=bestdata;
|
|
gbestdata=int_pos_data(maxloc(1),:);
|
|
gbestfit=maxval;
|
|
xhi=gbestdata;
|
|
[rr,cc]=size(int_pos_data);
|
|
initvel=ones(rr,cc)*0.01;
|
|
iter_inc=1;% Loop counter
|
|
% Main loop
|
|
data_pass_to{1}=0;
|
|
while iter_inc<=no_of_iter
|
|
|
|
|
|
|
|
|
|
|
|
gdata=linspace(1,0.1,pop_size);
|
|
for kpop=1:pop_size
|
|
xit=int_pos_data(kpop,:);
|
|
if(fitness(kpop)>gbestfit)
|
|
a1=rand;a2=rand;betaval=rand;
|
|
rpdata=norm(bestdata-int_pos_data(kpop,:),2);
|
|
rgdata=norm(gbestdata-int_pos_data(kpop,:),2);
|
|
f1=gdata(kpop)*initvel(kpop,:);
|
|
f2=a1*exp(-betaval/rpdata)*(xhi-xit);
|
|
f3=a2*exp(-betaval/rgdata)*(xg-xit);
|
|
newvel=f1+f2+f3;
|
|
|
|
else
|
|
dval=rand;rval=randn;
|
|
newvel=gdata(kpop)*initvel(kpop,:)+dval*rval;
|
|
end
|
|
initvel(kpop,:)=newvel;
|
|
end
|
|
int_pos_data=int_pos_data+initvel;
|
|
%Male
|
|
for indr=1:pop_size
|
|
dataele=(int_pos_data(indr,:));
|
|
dataele=limit_chk_process(dataele,...
|
|
max_val1,min_val1,data_pass_to);
|
|
elechoose=dataele;
|
|
obj_result=objective_process(datapass,elechoose);
|
|
int_pos_data1(indr,:)=dataele;
|
|
fitnessl(indr)=obj_result{1};
|
|
finalall{indr}=obj_result;
|
|
end
|
|
|
|
for kpop=1:pop_size
|
|
xit=int_pos_data(kpop,:);
|
|
yit=int_pos_data1(kpop,:);
|
|
if(fitness(kpop)<fitnessl(kpop))
|
|
a3=rand;betaval=rand;
|
|
rmfdata=norm(xit-yit,2);
|
|
f1=gdata(kpop)*initvel(kpop,:);
|
|
f3=a3*exp(-betaval/rmfdata)*(xit-yit);
|
|
newvel=f1+f3;
|
|
|
|
else
|
|
flval=rand;r2val=randn;
|
|
newvel=gdata(kpop)*initvel(kpop,:)+flval*r2val;
|
|
end
|
|
initvel(kpop,:)=newvel;
|
|
end
|
|
int_pos_data1=int_pos_data1+initvel;
|
|
L=rand;
|
|
int_pos_data11=L*int_pos_data1+(1-L)*int_pos_data;
|
|
%Female
|
|
for indr=1:pop_size
|
|
dataele=(int_pos_data11(indr,:));
|
|
dataele=limit_chk_process(dataele,...
|
|
max_val1,min_val1,data_pass_to);
|
|
elechoose=dataele;
|
|
|
|
if(iter_inc==no_of_iter && indr==pop_size)
|
|
datapass{21}=1;
|
|
else
|
|
datapass{21}=0;
|
|
end
|
|
|
|
obj_result=objective_process(datapass,elechoose);
|
|
int_pos_data11(indr,:)=dataele;
|
|
fitnessl1(indr)=obj_result{1};
|
|
finalall{indr}=obj_result;
|
|
end
|
|
|
|
[maxval,maxloc]=max(fitnessl1);
|
|
bestdata=int_pos_data11(maxloc(1),:);
|
|
bestdatafinal=finalall{maxloc(1)};
|
|
xg=bestdata;
|
|
|
|
|
|
[best_conver_data(iter_inc),best_location(iter_inc)]=max(fitnessl1);
|
|
|
|
final_data{iter_inc}=bestdata;
|
|
final_alldata{iter_inc}=bestdatafinal;
|
|
|
|
if iter_inc>=2 && best_conver_data(iter_inc)<best_conver_data(iter_inc-1)
|
|
best_conver_data(iter_inc)=best_conver_data(iter_inc-1);
|
|
final_data{iter_inc}=final_data{iter_inc-1};
|
|
final_alldata{iter_inc}=final_alldata{iter_inc-1};
|
|
end
|
|
iter_inc=iter_inc+1;
|
|
end
|
|
conver_result=best_conver_data;
|
|
Final_result=final_data{end};
|
|
all_result=final_alldata{end};
|
|
|
|
|
|
|