125 lines
3.4 KiB
Mathematica
125 lines
3.4 KiB
Mathematica
|
function [conver_result,Final_result,all_result]=horseherd_process(datapass,pop_size,no_of_iter)
|
||
|
|
||
|
traindata=datapass{1};
|
||
|
traindata_matrix=cell2mat(traindata);
|
||
|
len_data=max(max(traindata_matrix));
|
||
|
max_val1=1;
|
||
|
min_val1=0;
|
||
|
dim=len_data;
|
||
|
max_range=[repmat(max_val1,[1 dim])];
|
||
|
min_range=[repmat(min_val1,[1 dim])];
|
||
|
len=length(max_range);
|
||
|
int_pos_data=init_pop_data(pop_size,len,max_range,min_range);
|
||
|
data_pass_to{1}=[];
|
||
|
for indr=1:pop_size
|
||
|
dataele=(int_pos_data(indr,:));
|
||
|
dataele=limit_chk_process(dataele,...
|
||
|
max_val1,min_val1,data_pass_to);
|
||
|
elechoose=dataele;
|
||
|
obj_result=objective_process(datapass,elechoose);
|
||
|
int_pos_data(indr,:)=dataele;
|
||
|
fitness(indr)=obj_result{1};
|
||
|
finalall{indr}=obj_result;
|
||
|
end
|
||
|
[maxval,maxloc]=max(fitness);
|
||
|
bestdata=int_pos_data(maxloc(1),:);
|
||
|
bestfit=maxval;
|
||
|
xg=bestdata;
|
||
|
gbestdata=int_pos_data(maxloc(1),:);
|
||
|
gbestfit=maxval;
|
||
|
xhi=gbestdata;
|
||
|
[rr,cc]=size(int_pos_data);
|
||
|
initvel=ones(rr,cc)*0.01;
|
||
|
iter_inc=1;% Loop counter
|
||
|
% Main loop
|
||
|
data_pass_to{1}=0;
|
||
|
percentagehorse=[10 20 30 40]/100;
|
||
|
agedata=randsrc(1,pop_size,[1 2 3 4;percentagehorse]);
|
||
|
wg=0.95;wh=0.9;wsoc=0.9;wim=0.8;wdefmec=0.9;wro=0.9;
|
||
|
giter=1;hmiter=1;sociter=1;imiter=1;roiter=1;defmeciter=1;
|
||
|
while iter_inc<=no_of_iter
|
||
|
|
||
|
|
||
|
low=0.95;upp=1.05;
|
||
|
giter=wg*giter;
|
||
|
hmiter=hmiter*wh;
|
||
|
|
||
|
sociter=sociter*wsoc;
|
||
|
imiter=imiter*wim;
|
||
|
defmeciter=defmeciter*wdefmec;
|
||
|
|
||
|
roiter=roiter*wro;
|
||
|
|
||
|
newpos=randsrc(1,5,1:pop_size);
|
||
|
newpos2=randsrc(1,5,1:pop_size);
|
||
|
|
||
|
for kpop=1:pop_size
|
||
|
pit=int_pos_data(kpop,:);
|
||
|
r=rand;
|
||
|
gram=giter*(low+r*upp)*pit;
|
||
|
hm=hmiter*(bestdata-pit);
|
||
|
socm=sociter*(mean(int_pos_data)-pit);
|
||
|
imm=imiter*(mean(int_pos_data(newpos,:))-pit);
|
||
|
defmec=defmeciter*(mean(int_pos_data(newpos2,:))-pit);
|
||
|
ro=roiter*(pit);
|
||
|
|
||
|
velmalpha=gram+defmec;
|
||
|
velmbeta=gram+hm+socm+defmec;
|
||
|
velmgamma=gram+hm+socm+defmec+imm+ro;
|
||
|
velmdel=gram+imm+ro;
|
||
|
|
||
|
|
||
|
if(agedata(kpop)==1)
|
||
|
initvel(kpop,:)=velmalpha;
|
||
|
end
|
||
|
|
||
|
if(agedata(kpop)==2)
|
||
|
initvel(kpop,:)=velmbeta;
|
||
|
end
|
||
|
if(agedata(kpop)==3)
|
||
|
initvel(kpop,:)=velmgamma;
|
||
|
end
|
||
|
if(agedata(kpop)==4)
|
||
|
initvel(kpop,:)=velmdel;
|
||
|
end
|
||
|
|
||
|
|
||
|
end
|
||
|
int_pos_data=int_pos_data+initvel;
|
||
|
|
||
|
for indr=1:pop_size
|
||
|
dataele=(int_pos_data(indr,:));
|
||
|
dataele=limit_chk_process(dataele,...
|
||
|
max_val1,min_val1,data_pass_to);
|
||
|
elechoose=dataele;
|
||
|
if(iter_inc==no_of_iter && indr==pop_size)
|
||
|
datapass{21}=1;
|
||
|
else
|
||
|
datapass{21}=0;
|
||
|
end
|
||
|
|
||
|
obj_result=objective_process(datapass,elechoose);
|
||
|
int_pos_data11(indr,:)=dataele;
|
||
|
fitnessl1(indr)=obj_result{1};
|
||
|
finalall{indr}=obj_result;
|
||
|
end
|
||
|
[maxval,maxloc]=max(fitnessl1);
|
||
|
bestdata=int_pos_data11(maxloc(1),:);
|
||
|
bestdatafinal=finalall{maxloc(1)};
|
||
|
[best_conver_data(iter_inc),best_location(iter_inc)]=max(fitnessl1);
|
||
|
final_data{iter_inc}=bestdata;
|
||
|
final_alldata{iter_inc}=bestdatafinal;
|
||
|
if iter_inc>=2 && best_conver_data(iter_inc)<best_conver_data(iter_inc-1)
|
||
|
best_conver_data(iter_inc)=best_conver_data(iter_inc-1);
|
||
|
final_data{iter_inc}=final_data{iter_inc-1};
|
||
|
final_alldata{iter_inc}=final_alldata{iter_inc-1};
|
||
|
end
|
||
|
iter_inc=iter_inc+1;
|
||
|
end
|
||
|
conver_result=best_conver_data;
|
||
|
Final_result=final_data{end};
|
||
|
all_result=final_alldata{end};
|
||
|
|
||
|
|
||
|
|