forked from KEMT/zpwiki
Nahrát soubory do „pages/students/2016/lukas_pokryvka/dp2021/lungCancer/model“
This commit is contained in:
parent
35f3889338
commit
526fe93ff9
Binary file not shown.
@ -0,0 +1,76 @@
|
||||
import argparse
|
||||
import datetime
|
||||
import os
|
||||
import socket
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim
|
||||
|
||||
from torch.optim import SGD, Adam
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from util.util import enumerateWithEstimate
|
||||
from p2ch13.dsets import Luna2dSegmentationDataset, TrainingLuna2dSegmentationDataset, getCt
|
||||
from util.logconf import logging
|
||||
from util.util import xyz2irc
|
||||
from p2ch13.model_seg import UNetWrapper, SegmentationAugmentation
|
||||
from p2ch13.train_seg import LunaTrainingApp
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
# log.setLevel(logging.WARN)
|
||||
# log.setLevel(logging.INFO)
|
||||
log.setLevel(logging.DEBUG)
|
||||
|
||||
class BenchmarkLuna2dSegmentationDataset(TrainingLuna2dSegmentationDataset):
|
||||
def __len__(self):
|
||||
# return 500
|
||||
return 5000
|
||||
return 1000
|
||||
|
||||
class LunaBenchmarkApp(LunaTrainingApp):
|
||||
def initTrainDl(self):
|
||||
train_ds = BenchmarkLuna2dSegmentationDataset(
|
||||
val_stride=10,
|
||||
isValSet_bool=False,
|
||||
contextSlices_count=3,
|
||||
# augmentation_dict=self.augmentation_dict,
|
||||
)
|
||||
|
||||
batch_size = self.cli_args.batch_size
|
||||
if self.use_cuda:
|
||||
batch_size *= torch.cuda.device_count()
|
||||
|
||||
train_dl = DataLoader(
|
||||
train_ds,
|
||||
batch_size=batch_size,
|
||||
num_workers=self.cli_args.num_workers,
|
||||
pin_memory=self.use_cuda,
|
||||
)
|
||||
|
||||
return train_dl
|
||||
|
||||
def main(self):
|
||||
log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
|
||||
|
||||
train_dl = self.initTrainDl()
|
||||
|
||||
for epoch_ndx in range(1, 2):
|
||||
log.info("Epoch {} of {}, {}/{} batches of size {}*{}".format(
|
||||
epoch_ndx,
|
||||
self.cli_args.epochs,
|
||||
len(train_dl),
|
||||
len([]),
|
||||
self.cli_args.batch_size,
|
||||
(torch.cuda.device_count() if self.use_cuda else 1),
|
||||
))
|
||||
|
||||
self.doTraining(epoch_ndx, train_dl)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
LunaBenchmarkApp().main()
|
@ -0,0 +1,401 @@
|
||||
import copy
|
||||
import csv
|
||||
import functools
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
|
||||
from collections import namedtuple
|
||||
|
||||
import SimpleITK as sitk
|
||||
import numpy as np
|
||||
import scipy.ndimage.morphology as morph
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from util.disk import getCache
|
||||
from util.util import XyzTuple, xyz2irc
|
||||
from util.logconf import logging
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
# log.setLevel(logging.WARN)
|
||||
# log.setLevel(logging.INFO)
|
||||
log.setLevel(logging.DEBUG)
|
||||
|
||||
raw_cache = getCache('part2ch13_raw')
|
||||
|
||||
MaskTuple = namedtuple('MaskTuple', 'raw_dense_mask, dense_mask, body_mask, air_mask, raw_candidate_mask, candidate_mask, lung_mask, neg_mask, pos_mask')
|
||||
|
||||
CandidateInfoTuple = namedtuple('CandidateInfoTuple', 'isNodule_bool, hasAnnotation_bool, isMal_bool, diameter_mm, series_uid, center_xyz')
|
||||
|
||||
@functools.lru_cache(1)
|
||||
def getCandidateInfoList(requireOnDisk_bool=True):
|
||||
# We construct a set with all series_uids that are present on disk.
|
||||
# This will let us use the data, even if we haven't downloaded all of
|
||||
# the subsets yet.
|
||||
mhd_list = glob.glob('data-unversioned/subset*/*.mhd')
|
||||
presentOnDisk_set = {os.path.split(p)[-1][:-4] for p in mhd_list}
|
||||
|
||||
candidateInfo_list = []
|
||||
with open('data/annotations_with_malignancy.csv', "r") as f:
|
||||
for row in list(csv.reader(f))[1:]:
|
||||
series_uid = row[0]
|
||||
annotationCenter_xyz = tuple([float(x) for x in row[1:4]])
|
||||
annotationDiameter_mm = float(row[4])
|
||||
isMal_bool = {'False': False, 'True': True}[row[5]]
|
||||
|
||||
candidateInfo_list.append(
|
||||
CandidateInfoTuple(
|
||||
True,
|
||||
True,
|
||||
isMal_bool,
|
||||
annotationDiameter_mm,
|
||||
series_uid,
|
||||
annotationCenter_xyz,
|
||||
)
|
||||
)
|
||||
|
||||
with open('data/candidates.csv', "r") as f:
|
||||
for row in list(csv.reader(f))[1:]:
|
||||
series_uid = row[0]
|
||||
|
||||
if series_uid not in presentOnDisk_set and requireOnDisk_bool:
|
||||
continue
|
||||
|
||||
isNodule_bool = bool(int(row[4]))
|
||||
candidateCenter_xyz = tuple([float(x) for x in row[1:4]])
|
||||
|
||||
if not isNodule_bool:
|
||||
candidateInfo_list.append(
|
||||
CandidateInfoTuple(
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0.0,
|
||||
series_uid,
|
||||
candidateCenter_xyz,
|
||||
)
|
||||
)
|
||||
|
||||
candidateInfo_list.sort(reverse=True)
|
||||
return candidateInfo_list
|
||||
|
||||
@functools.lru_cache(1)
|
||||
def getCandidateInfoDict(requireOnDisk_bool=True):
|
||||
candidateInfo_list = getCandidateInfoList(requireOnDisk_bool)
|
||||
candidateInfo_dict = {}
|
||||
|
||||
for candidateInfo_tup in candidateInfo_list:
|
||||
candidateInfo_dict.setdefault(candidateInfo_tup.series_uid,
|
||||
[]).append(candidateInfo_tup)
|
||||
|
||||
return candidateInfo_dict
|
||||
|
||||
class Ct:
|
||||
def __init__(self, series_uid):
|
||||
mhd_path = glob.glob(
|
||||
'data-unversioned/subset*/{}.mhd'.format(series_uid)
|
||||
)[0]
|
||||
|
||||
ct_mhd = sitk.ReadImage(mhd_path)
|
||||
self.hu_a = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32)
|
||||
|
||||
# CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale
|
||||
# HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0.
|
||||
|
||||
self.series_uid = series_uid
|
||||
|
||||
self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin())
|
||||
self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing())
|
||||
self.direction_a = np.array(ct_mhd.GetDirection()).reshape(3, 3)
|
||||
|
||||
candidateInfo_list = getCandidateInfoDict()[self.series_uid]
|
||||
|
||||
self.positiveInfo_list = [
|
||||
candidate_tup
|
||||
for candidate_tup in candidateInfo_list
|
||||
if candidate_tup.isNodule_bool
|
||||
]
|
||||
self.positive_mask = self.buildAnnotationMask(self.positiveInfo_list)
|
||||
self.positive_indexes = (self.positive_mask.sum(axis=(1,2))
|
||||
.nonzero()[0].tolist())
|
||||
|
||||
def buildAnnotationMask(self, positiveInfo_list, threshold_hu = -700):
|
||||
boundingBox_a = np.zeros_like(self.hu_a, dtype=np.bool)
|
||||
|
||||
for candidateInfo_tup in positiveInfo_list:
|
||||
center_irc = xyz2irc(
|
||||
candidateInfo_tup.center_xyz,
|
||||
self.origin_xyz,
|
||||
self.vxSize_xyz,
|
||||
self.direction_a,
|
||||
)
|
||||
ci = int(center_irc.index)
|
||||
cr = int(center_irc.row)
|
||||
cc = int(center_irc.col)
|
||||
|
||||
index_radius = 2
|
||||
try:
|
||||
while self.hu_a[ci + index_radius, cr, cc] > threshold_hu and \
|
||||
self.hu_a[ci - index_radius, cr, cc] > threshold_hu:
|
||||
index_radius += 1
|
||||
except IndexError:
|
||||
index_radius -= 1
|
||||
|
||||
row_radius = 2
|
||||
try:
|
||||
while self.hu_a[ci, cr + row_radius, cc] > threshold_hu and \
|
||||
self.hu_a[ci, cr - row_radius, cc] > threshold_hu:
|
||||
row_radius += 1
|
||||
except IndexError:
|
||||
row_radius -= 1
|
||||
|
||||
col_radius = 2
|
||||
try:
|
||||
while self.hu_a[ci, cr, cc + col_radius] > threshold_hu and \
|
||||
self.hu_a[ci, cr, cc - col_radius] > threshold_hu:
|
||||
col_radius += 1
|
||||
except IndexError:
|
||||
col_radius -= 1
|
||||
|
||||
# assert index_radius > 0, repr([candidateInfo_tup.center_xyz, center_irc, self.hu_a[ci, cr, cc]])
|
||||
# assert row_radius > 0
|
||||
# assert col_radius > 0
|
||||
|
||||
boundingBox_a[
|
||||
ci - index_radius: ci + index_radius + 1,
|
||||
cr - row_radius: cr + row_radius + 1,
|
||||
cc - col_radius: cc + col_radius + 1] = True
|
||||
|
||||
mask_a = boundingBox_a & (self.hu_a > threshold_hu)
|
||||
|
||||
return mask_a
|
||||
|
||||
def getRawCandidate(self, center_xyz, width_irc):
|
||||
center_irc = xyz2irc(center_xyz, self.origin_xyz, self.vxSize_xyz,
|
||||
self.direction_a)
|
||||
|
||||
slice_list = []
|
||||
for axis, center_val in enumerate(center_irc):
|
||||
start_ndx = int(round(center_val - width_irc[axis]/2))
|
||||
end_ndx = int(start_ndx + width_irc[axis])
|
||||
|
||||
assert center_val >= 0 and center_val < self.hu_a.shape[axis], repr([self.series_uid, center_xyz, self.origin_xyz, self.vxSize_xyz, center_irc, axis])
|
||||
|
||||
if start_ndx < 0:
|
||||
# log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
|
||||
# self.series_uid, center_xyz, center_irc, self.hu_a.shape, width_irc))
|
||||
start_ndx = 0
|
||||
end_ndx = int(width_irc[axis])
|
||||
|
||||
if end_ndx > self.hu_a.shape[axis]:
|
||||
# log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
|
||||
# self.series_uid, center_xyz, center_irc, self.hu_a.shape, width_irc))
|
||||
end_ndx = self.hu_a.shape[axis]
|
||||
start_ndx = int(self.hu_a.shape[axis] - width_irc[axis])
|
||||
|
||||
slice_list.append(slice(start_ndx, end_ndx))
|
||||
|
||||
ct_chunk = self.hu_a[tuple(slice_list)]
|
||||
pos_chunk = self.positive_mask[tuple(slice_list)]
|
||||
|
||||
return ct_chunk, pos_chunk, center_irc
|
||||
|
||||
@functools.lru_cache(1, typed=True)
|
||||
def getCt(series_uid):
|
||||
return Ct(series_uid)
|
||||
|
||||
@raw_cache.memoize(typed=True)
|
||||
def getCtRawCandidate(series_uid, center_xyz, width_irc):
|
||||
ct = getCt(series_uid)
|
||||
ct_chunk, pos_chunk, center_irc = ct.getRawCandidate(center_xyz,
|
||||
width_irc)
|
||||
ct_chunk.clip(-1000, 1000, ct_chunk)
|
||||
return ct_chunk, pos_chunk, center_irc
|
||||
|
||||
@raw_cache.memoize(typed=True)
|
||||
def getCtSampleSize(series_uid):
|
||||
ct = Ct(series_uid)
|
||||
return int(ct.hu_a.shape[0]), ct.positive_indexes
|
||||
|
||||
|
||||
class Luna2dSegmentationDataset(Dataset):
|
||||
def __init__(self,
|
||||
val_stride=0,
|
||||
isValSet_bool=None,
|
||||
series_uid=None,
|
||||
contextSlices_count=3,
|
||||
fullCt_bool=False,
|
||||
):
|
||||
self.contextSlices_count = contextSlices_count
|
||||
self.fullCt_bool = fullCt_bool
|
||||
|
||||
if series_uid:
|
||||
self.series_list = [series_uid]
|
||||
else:
|
||||
self.series_list = sorted(getCandidateInfoDict().keys())
|
||||
|
||||
if isValSet_bool:
|
||||
assert val_stride > 0, val_stride
|
||||
self.series_list = self.series_list[::val_stride]
|
||||
assert self.series_list
|
||||
elif val_stride > 0:
|
||||
del self.series_list[::val_stride]
|
||||
assert self.series_list
|
||||
|
||||
self.sample_list = []
|
||||
for series_uid in self.series_list:
|
||||
index_count, positive_indexes = getCtSampleSize(series_uid)
|
||||
|
||||
if self.fullCt_bool:
|
||||
self.sample_list += [(series_uid, slice_ndx)
|
||||
for slice_ndx in range(index_count)]
|
||||
else:
|
||||
self.sample_list += [(series_uid, slice_ndx)
|
||||
for slice_ndx in positive_indexes]
|
||||
|
||||
self.candidateInfo_list = getCandidateInfoList()
|
||||
|
||||
series_set = set(self.series_list)
|
||||
self.candidateInfo_list = [cit for cit in self.candidateInfo_list
|
||||
if cit.series_uid in series_set]
|
||||
|
||||
self.pos_list = [nt for nt in self.candidateInfo_list
|
||||
if nt.isNodule_bool]
|
||||
|
||||
log.info("{!r}: {} {} series, {} slices, {} nodules".format(
|
||||
self,
|
||||
len(self.series_list),
|
||||
{None: 'general', True: 'validation', False: 'training'}[isValSet_bool],
|
||||
len(self.sample_list),
|
||||
len(self.pos_list),
|
||||
))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.sample_list)
|
||||
|
||||
def __getitem__(self, ndx):
|
||||
series_uid, slice_ndx = self.sample_list[ndx % len(self.sample_list)]
|
||||
return self.getitem_fullSlice(series_uid, slice_ndx)
|
||||
|
||||
def getitem_fullSlice(self, series_uid, slice_ndx):
|
||||
ct = getCt(series_uid)
|
||||
ct_t = torch.zeros((self.contextSlices_count * 2 + 1, 512, 512))
|
||||
|
||||
start_ndx = slice_ndx - self.contextSlices_count
|
||||
end_ndx = slice_ndx + self.contextSlices_count + 1
|
||||
for i, context_ndx in enumerate(range(start_ndx, end_ndx)):
|
||||
context_ndx = max(context_ndx, 0)
|
||||
context_ndx = min(context_ndx, ct.hu_a.shape[0] - 1)
|
||||
ct_t[i] = torch.from_numpy(ct.hu_a[context_ndx].astype(np.float32))
|
||||
|
||||
# CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale
|
||||
# HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0.
|
||||
# The lower bound gets rid of negative density stuff used to indicate out-of-FOV
|
||||
# The upper bound nukes any weird hotspots and clamps bone down
|
||||
ct_t.clamp_(-1000, 1000)
|
||||
|
||||
pos_t = torch.from_numpy(ct.positive_mask[slice_ndx]).unsqueeze(0)
|
||||
|
||||
return ct_t, pos_t, ct.series_uid, slice_ndx
|
||||
|
||||
|
||||
class TrainingLuna2dSegmentationDataset(Luna2dSegmentationDataset):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.ratio_int = 2
|
||||
|
||||
def __len__(self):
|
||||
return 300000
|
||||
|
||||
def shuffleSamples(self):
|
||||
random.shuffle(self.candidateInfo_list)
|
||||
random.shuffle(self.pos_list)
|
||||
|
||||
def __getitem__(self, ndx):
|
||||
candidateInfo_tup = self.pos_list[ndx % len(self.pos_list)]
|
||||
return self.getitem_trainingCrop(candidateInfo_tup)
|
||||
|
||||
def getitem_trainingCrop(self, candidateInfo_tup):
|
||||
ct_a, pos_a, center_irc = getCtRawCandidate(
|
||||
candidateInfo_tup.series_uid,
|
||||
candidateInfo_tup.center_xyz,
|
||||
(7, 96, 96),
|
||||
)
|
||||
pos_a = pos_a[3:4]
|
||||
|
||||
row_offset = random.randrange(0,32)
|
||||
col_offset = random.randrange(0,32)
|
||||
ct_t = torch.from_numpy(ct_a[:, row_offset:row_offset+64,
|
||||
col_offset:col_offset+64]).to(torch.float32)
|
||||
pos_t = torch.from_numpy(pos_a[:, row_offset:row_offset+64,
|
||||
col_offset:col_offset+64]).to(torch.long)
|
||||
|
||||
slice_ndx = center_irc.index
|
||||
|
||||
return ct_t, pos_t, candidateInfo_tup.series_uid, slice_ndx
|
||||
|
||||
class PrepcacheLunaDataset(Dataset):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self.candidateInfo_list = getCandidateInfoList()
|
||||
self.pos_list = [nt for nt in self.candidateInfo_list if nt.isNodule_bool]
|
||||
|
||||
self.seen_set = set()
|
||||
self.candidateInfo_list.sort(key=lambda x: x.series_uid)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.candidateInfo_list)
|
||||
|
||||
def __getitem__(self, ndx):
|
||||
# candidate_t, pos_t, series_uid, center_t = super().__getitem__(ndx)
|
||||
|
||||
candidateInfo_tup = self.candidateInfo_list[ndx]
|
||||
getCtRawCandidate(candidateInfo_tup.series_uid, candidateInfo_tup.center_xyz, (7, 96, 96))
|
||||
|
||||
series_uid = candidateInfo_tup.series_uid
|
||||
if series_uid not in self.seen_set:
|
||||
self.seen_set.add(series_uid)
|
||||
|
||||
getCtSampleSize(series_uid)
|
||||
# ct = getCt(series_uid)
|
||||
# for mask_ndx in ct.positive_indexes:
|
||||
# build2dLungMask(series_uid, mask_ndx)
|
||||
|
||||
return 0, 1 #candidate_t, pos_t, series_uid, center_t
|
||||
|
||||
|
||||
class TvTrainingLuna2dSegmentationDataset(torch.utils.data.Dataset):
|
||||
def __init__(self, isValSet_bool=False, val_stride=10, contextSlices_count=3):
|
||||
assert contextSlices_count == 3
|
||||
data = torch.load('./imgs_and_masks.pt')
|
||||
suids = list(set(data['suids']))
|
||||
trn_mask_suids = torch.arange(len(suids)) % val_stride < (val_stride - 1)
|
||||
trn_suids = {s for i, s in zip(trn_mask_suids, suids) if i}
|
||||
trn_mask = torch.tensor([(s in trn_suids) for s in data["suids"]])
|
||||
if not isValSet_bool:
|
||||
self.imgs = data["imgs"][trn_mask]
|
||||
self.masks = data["masks"][trn_mask]
|
||||
self.suids = [s for s, i in zip(data["suids"], trn_mask) if i]
|
||||
else:
|
||||
self.imgs = data["imgs"][~trn_mask]
|
||||
self.masks = data["masks"][~trn_mask]
|
||||
self.suids = [s for s, i in zip(data["suids"], trn_mask) if not i]
|
||||
# discard spurious hotspots and clamp bone
|
||||
self.imgs.clamp_(-1000, 1000)
|
||||
self.imgs /= 1000
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.imgs)
|
||||
|
||||
def __getitem__(self, i):
|
||||
oh, ow = torch.randint(0, 32, (2,))
|
||||
sl = self.masks.size(1)//2
|
||||
return self.imgs[i, :, oh: oh + 64, ow: ow + 64], 1, self.masks[i, sl: sl+1, oh: oh + 64, ow: ow + 64].to(torch.float32), self.suids[i], 9999
|
@ -0,0 +1,224 @@
|
||||
import math
|
||||
import random
|
||||
from collections import namedtuple
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from util.logconf import logging
|
||||
from util.unet import UNet
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
# log.setLevel(logging.WARN)
|
||||
# log.setLevel(logging.INFO)
|
||||
log.setLevel(logging.DEBUG)
|
||||
|
||||
class UNetWrapper(nn.Module):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.input_batchnorm = nn.BatchNorm2d(kwargs['in_channels'])
|
||||
self.unet = UNet(**kwargs)
|
||||
self.final = nn.Sigmoid()
|
||||
|
||||
self._init_weights()
|
||||
|
||||
def _init_weights(self):
|
||||
init_set = {
|
||||
nn.Conv2d,
|
||||
nn.Conv3d,
|
||||
nn.ConvTranspose2d,
|
||||
nn.ConvTranspose3d,
|
||||
nn.Linear,
|
||||
}
|
||||
for m in self.modules():
|
||||
if type(m) in init_set:
|
||||
nn.init.kaiming_normal_(
|
||||
m.weight.data, mode='fan_out', nonlinearity='relu', a=0
|
||||
)
|
||||
if m.bias is not None:
|
||||
fan_in, fan_out = \
|
||||
nn.init._calculate_fan_in_and_fan_out(m.weight.data)
|
||||
bound = 1 / math.sqrt(fan_out)
|
||||
nn.init.normal_(m.bias, -bound, bound)
|
||||
|
||||
# nn.init.constant_(self.unet.last.bias, -4)
|
||||
# nn.init.constant_(self.unet.last.bias, 4)
|
||||
|
||||
|
||||
def forward(self, input_batch):
|
||||
bn_output = self.input_batchnorm(input_batch)
|
||||
un_output = self.unet(bn_output)
|
||||
fn_output = self.final(un_output)
|
||||
return fn_output
|
||||
|
||||
class SegmentationAugmentation(nn.Module):
|
||||
def __init__(
|
||||
self, flip=None, offset=None, scale=None, rotate=None, noise=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.flip = flip
|
||||
self.offset = offset
|
||||
self.scale = scale
|
||||
self.rotate = rotate
|
||||
self.noise = noise
|
||||
|
||||
def forward(self, input_g, label_g):
|
||||
transform_t = self._build2dTransformMatrix()
|
||||
transform_t = transform_t.expand(input_g.shape[0], -1, -1)
|
||||
transform_t = transform_t.to(input_g.device, torch.float32)
|
||||
affine_t = F.affine_grid(transform_t[:,:2],
|
||||
input_g.size(), align_corners=False)
|
||||
|
||||
augmented_input_g = F.grid_sample(input_g,
|
||||
affine_t, padding_mode='border',
|
||||
align_corners=False)
|
||||
augmented_label_g = F.grid_sample(label_g.to(torch.float32),
|
||||
affine_t, padding_mode='border',
|
||||
align_corners=False)
|
||||
|
||||
if self.noise:
|
||||
noise_t = torch.randn_like(augmented_input_g)
|
||||
noise_t *= self.noise
|
||||
|
||||
augmented_input_g += noise_t
|
||||
|
||||
return augmented_input_g, augmented_label_g > 0.5
|
||||
|
||||
def _build2dTransformMatrix(self):
|
||||
transform_t = torch.eye(3)
|
||||
|
||||
for i in range(2):
|
||||
if self.flip:
|
||||
if random.random() > 0.5:
|
||||
transform_t[i,i] *= -1
|
||||
|
||||
if self.offset:
|
||||
offset_float = self.offset
|
||||
random_float = (random.random() * 2 - 1)
|
||||
transform_t[2,i] = offset_float * random_float
|
||||
|
||||
if self.scale:
|
||||
scale_float = self.scale
|
||||
random_float = (random.random() * 2 - 1)
|
||||
transform_t[i,i] *= 1.0 + scale_float * random_float
|
||||
|
||||
if self.rotate:
|
||||
angle_rad = random.random() * math.pi * 2
|
||||
s = math.sin(angle_rad)
|
||||
c = math.cos(angle_rad)
|
||||
|
||||
rotation_t = torch.tensor([
|
||||
[c, -s, 0],
|
||||
[s, c, 0],
|
||||
[0, 0, 1]])
|
||||
|
||||
transform_t @= rotation_t
|
||||
|
||||
return transform_t
|
||||
|
||||
|
||||
# MaskTuple = namedtuple('MaskTuple', 'raw_dense_mask, dense_mask, body_mask, air_mask, raw_candidate_mask, candidate_mask, lung_mask, neg_mask, pos_mask')
|
||||
#
|
||||
# class SegmentationMask(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
#
|
||||
# self.conv_list = nn.ModuleList([
|
||||
# self._make_circle_conv(radius) for radius in range(1, 8)
|
||||
# ])
|
||||
#
|
||||
# def _make_circle_conv(self, radius):
|
||||
# diameter = 1 + radius * 2
|
||||
#
|
||||
# a = torch.linspace(-1, 1, steps=diameter)**2
|
||||
# b = (a[None] + a[:, None])**0.5
|
||||
#
|
||||
# circle_weights = (b <= 1.0).to(torch.float32)
|
||||
#
|
||||
# conv = nn.Conv2d(1, 1, kernel_size=diameter, padding=radius, bias=False)
|
||||
# conv.weight.data.fill_(1)
|
||||
# conv.weight.data *= circle_weights / circle_weights.sum()
|
||||
#
|
||||
# return conv
|
||||
#
|
||||
#
|
||||
# def erode(self, input_mask, radius, threshold=1):
|
||||
# conv = self.conv_list[radius - 1]
|
||||
# input_float = input_mask.to(torch.float32)
|
||||
# result = conv(input_float)
|
||||
#
|
||||
# # log.debug(['erode in ', radius, threshold, input_float.min().item(), input_float.mean().item(), input_float.max().item()])
|
||||
# # log.debug(['erode out', radius, threshold, result.min().item(), result.mean().item(), result.max().item()])
|
||||
#
|
||||
# return result >= threshold
|
||||
#
|
||||
# def deposit(self, input_mask, radius, threshold=0):
|
||||
# conv = self.conv_list[radius - 1]
|
||||
# input_float = input_mask.to(torch.float32)
|
||||
# result = conv(input_float)
|
||||
#
|
||||
# # log.debug(['deposit in ', radius, threshold, input_float.min().item(), input_float.mean().item(), input_float.max().item()])
|
||||
# # log.debug(['deposit out', radius, threshold, result.min().item(), result.mean().item(), result.max().item()])
|
||||
#
|
||||
# return result > threshold
|
||||
#
|
||||
# def fill_cavity(self, input_mask):
|
||||
# cumsum = input_mask.cumsum(-1)
|
||||
# filled_mask = (cumsum > 0)
|
||||
# filled_mask &= (cumsum < cumsum[..., -1:])
|
||||
# cumsum = input_mask.cumsum(-2)
|
||||
# filled_mask &= (cumsum > 0)
|
||||
# filled_mask &= (cumsum < cumsum[..., -1:, :])
|
||||
#
|
||||
# return filled_mask
|
||||
#
|
||||
#
|
||||
# def forward(self, input_g, raw_pos_g):
|
||||
# gcc_g = input_g + 1
|
||||
#
|
||||
# with torch.no_grad():
|
||||
# # log.info(['gcc_g', gcc_g.min(), gcc_g.mean(), gcc_g.max()])
|
||||
#
|
||||
# raw_dense_mask = gcc_g > 0.7
|
||||
# dense_mask = self.deposit(raw_dense_mask, 2)
|
||||
# dense_mask = self.erode(dense_mask, 6)
|
||||
# dense_mask = self.deposit(dense_mask, 4)
|
||||
#
|
||||
# body_mask = self.fill_cavity(dense_mask)
|
||||
# air_mask = self.deposit(body_mask & ~dense_mask, 5)
|
||||
# air_mask = self.erode(air_mask, 6)
|
||||
#
|
||||
# lung_mask = self.deposit(air_mask, 5)
|
||||
#
|
||||
# raw_candidate_mask = gcc_g > 0.4
|
||||
# raw_candidate_mask &= air_mask
|
||||
# candidate_mask = self.erode(raw_candidate_mask, 1)
|
||||
# candidate_mask = self.deposit(candidate_mask, 1)
|
||||
#
|
||||
# pos_mask = self.deposit((raw_pos_g > 0.5) & lung_mask, 2)
|
||||
#
|
||||
# neg_mask = self.deposit(candidate_mask, 1)
|
||||
# neg_mask &= ~pos_mask
|
||||
# neg_mask &= lung_mask
|
||||
#
|
||||
# # label_g = (neg_mask | pos_mask).to(torch.float32)
|
||||
# label_g = (pos_mask).to(torch.float32)
|
||||
# neg_g = neg_mask.to(torch.float32)
|
||||
# pos_g = pos_mask.to(torch.float32)
|
||||
#
|
||||
# mask_dict = {
|
||||
# 'raw_dense_mask': raw_dense_mask,
|
||||
# 'dense_mask': dense_mask,
|
||||
# 'body_mask': body_mask,
|
||||
# 'air_mask': air_mask,
|
||||
# 'raw_candidate_mask': raw_candidate_mask,
|
||||
# 'candidate_mask': candidate_mask,
|
||||
# 'lung_mask': lung_mask,
|
||||
# 'neg_mask': neg_mask,
|
||||
# 'pos_mask': pos_mask,
|
||||
# }
|
||||
#
|
||||
# return label_g, neg_g, pos_g, lung_mask, mask_dict
|
@ -0,0 +1,69 @@
|
||||
import timing
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.autograd import Variable
|
||||
from torch.optim import SGD
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from util.util import enumerateWithEstimate
|
||||
from .dsets import PrepcacheLunaDataset, getCtSampleSize
|
||||
from util.logconf import logging
|
||||
# from .model import LunaModel
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
# log.setLevel(logging.WARN)
|
||||
log.setLevel(logging.INFO)
|
||||
# log.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
class LunaPrepCacheApp:
|
||||
@classmethod
|
||||
def __init__(self, sys_argv=None):
|
||||
if sys_argv is None:
|
||||
sys_argv = sys.argv[1:]
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--batch-size',
|
||||
help='Batch size to use for training',
|
||||
default=1024,
|
||||
type=int,
|
||||
)
|
||||
parser.add_argument('--num-workers',
|
||||
help='Number of worker processes for background data loading',
|
||||
default=8,
|
||||
type=int,
|
||||
)
|
||||
# parser.add_argument('--scaled',
|
||||
# help="Scale the CT chunks to square voxels.",
|
||||
# default=False,
|
||||
# action='store_true',
|
||||
# )
|
||||
|
||||
self.cli_args = parser.parse_args(sys_argv)
|
||||
|
||||
def main(self):
|
||||
log.info("Starting {}, {}".format(type(self).__name__, self.cli_args))
|
||||
|
||||
self.prep_dl = DataLoader(
|
||||
PrepcacheLunaDataset(
|
||||
# sortby_str='series_uid',
|
||||
),
|
||||
batch_size=self.cli_args.batch_size,
|
||||
num_workers=self.cli_args.num_workers,
|
||||
)
|
||||
|
||||
batch_iter = enumerateWithEstimate(
|
||||
self.prep_dl,
|
||||
"Stuffing cache",
|
||||
start_ndx=self.prep_dl.num_workers,
|
||||
)
|
||||
for batch_ndx, batch_tup in batch_iter:
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
LunaPrepCacheApp().main()
|
Loading…
Reference in New Issue
Block a user