forked from KEMT/zpwiki
		
	Update 'pages/topics/bert/README.md'
This commit is contained in:
		
							parent
							
								
									218e472e17
								
							
						
					
					
						commit
						13faa91944
					
				@ -17,17 +17,9 @@ author: Daniel Hládek
 | 
				
			|||||||
- [SlovakBERT](https://github.com/gerulata/slovakbert) od Kinit, a [článok](https://arxiv.org/abs/2109.15254)
 | 
					- [SlovakBERT](https://github.com/gerulata/slovakbert) od Kinit, a [článok](https://arxiv.org/abs/2109.15254)
 | 
				
			||||||
- [SK Quad](/topics/question) - Slovak Question Answering Dataset 
 | 
					- [SK Quad](/topics/question) - Slovak Question Answering Dataset 
 | 
				
			||||||
- bakalárska práca [Ondrej Megela](/students/2018/ondrej_megela)
 | 
					- bakalárska práca [Ondrej Megela](/students/2018/ondrej_megela)
 | 
				
			||||||
 | 
					- https://git.kemt.fei.tuke.sk/dano/bert-train
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Hardvérové požiadavky
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
[https://medium.com/nvidia-ai/how-to-scale-the-bert-training-with-nvidia-gpus-c1575e8eaf71](zz):
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    When the mini-batch size n is multiplied by k, we should multiply the starting learning rate η by the square root of k as some theories may suggest. However, with experiments from multiple researchers, linear scaling shows better results, i.e. multiply the starting learning rate by k instead.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
| BERT Large | 330M |
 | 
					 | 
				
			||||||
| BERT Base | 110M |
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Väčšia veľkosť vstupného vektora => menšia veľkosť dávky => menší parameter učenia => pomalšie učenie
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Hotové úlohy
 | 
					## Hotové úlohy
 | 
				
			||||||
@ -76,3 +68,14 @@ Väčšia veľkosť vstupného vektora => menšia veľkosť dávky => menší pa
 | 
				
			|||||||
- Natrénovať BART model.
 | 
					- Natrénovať BART model.
 | 
				
			||||||
- Natrénovať model založený na znakoch.
 | 
					- Natrénovať model založený na znakoch.
 | 
				
			||||||
- Adaptovať SlovakBERT na SQUAD. To znamená dorobiť úlohu SQUAD do fairseq.
 | 
					- Adaptovať SlovakBERT na SQUAD. To znamená dorobiť úlohu SQUAD do fairseq.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Hardvérové požiadavky
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					[https://medium.com/nvidia-ai/how-to-scale-the-bert-training-with-nvidia-gpus-c1575e8eaf71](zz):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    When the mini-batch size n is multiplied by k, we should multiply the starting learning rate η by the square root of k as some theories may suggest. However, with experiments from multiple researchers, linear scaling shows better results, i.e. multiply the starting learning rate by k instead.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| BERT Large | 330M |
 | 
				
			||||||
 | 
					| BERT Base | 110M |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Väčšia veľkosť vstupného vektora => menšia veľkosť dávky => menší parameter učenia => pomalšie učenie
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user