forked from KEMT/zpwiki
402 lines
15 KiB
Python
402 lines
15 KiB
Python
|
import copy
|
||
|
import csv
|
||
|
import functools
|
||
|
import glob
|
||
|
import math
|
||
|
import os
|
||
|
import random
|
||
|
|
||
|
from collections import namedtuple
|
||
|
|
||
|
import SimpleITK as sitk
|
||
|
import numpy as np
|
||
|
import scipy.ndimage.morphology as morph
|
||
|
|
||
|
import torch
|
||
|
import torch.cuda
|
||
|
import torch.nn.functional as F
|
||
|
from torch.utils.data import Dataset
|
||
|
|
||
|
from util.disk import getCache
|
||
|
from util.util import XyzTuple, xyz2irc
|
||
|
from util.logconf import logging
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
# log.setLevel(logging.WARN)
|
||
|
# log.setLevel(logging.INFO)
|
||
|
log.setLevel(logging.DEBUG)
|
||
|
|
||
|
raw_cache = getCache('part2ch13_raw')
|
||
|
|
||
|
MaskTuple = namedtuple('MaskTuple', 'raw_dense_mask, dense_mask, body_mask, air_mask, raw_candidate_mask, candidate_mask, lung_mask, neg_mask, pos_mask')
|
||
|
|
||
|
CandidateInfoTuple = namedtuple('CandidateInfoTuple', 'isNodule_bool, hasAnnotation_bool, isMal_bool, diameter_mm, series_uid, center_xyz')
|
||
|
|
||
|
@functools.lru_cache(1)
|
||
|
def getCandidateInfoList(requireOnDisk_bool=True):
|
||
|
# We construct a set with all series_uids that are present on disk.
|
||
|
# This will let us use the data, even if we haven't downloaded all of
|
||
|
# the subsets yet.
|
||
|
mhd_list = glob.glob('data-unversioned/subset*/*.mhd')
|
||
|
presentOnDisk_set = {os.path.split(p)[-1][:-4] for p in mhd_list}
|
||
|
|
||
|
candidateInfo_list = []
|
||
|
with open('data/annotations_with_malignancy.csv', "r") as f:
|
||
|
for row in list(csv.reader(f))[1:]:
|
||
|
series_uid = row[0]
|
||
|
annotationCenter_xyz = tuple([float(x) for x in row[1:4]])
|
||
|
annotationDiameter_mm = float(row[4])
|
||
|
isMal_bool = {'False': False, 'True': True}[row[5]]
|
||
|
|
||
|
candidateInfo_list.append(
|
||
|
CandidateInfoTuple(
|
||
|
True,
|
||
|
True,
|
||
|
isMal_bool,
|
||
|
annotationDiameter_mm,
|
||
|
series_uid,
|
||
|
annotationCenter_xyz,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
with open('data/candidates.csv', "r") as f:
|
||
|
for row in list(csv.reader(f))[1:]:
|
||
|
series_uid = row[0]
|
||
|
|
||
|
if series_uid not in presentOnDisk_set and requireOnDisk_bool:
|
||
|
continue
|
||
|
|
||
|
isNodule_bool = bool(int(row[4]))
|
||
|
candidateCenter_xyz = tuple([float(x) for x in row[1:4]])
|
||
|
|
||
|
if not isNodule_bool:
|
||
|
candidateInfo_list.append(
|
||
|
CandidateInfoTuple(
|
||
|
False,
|
||
|
False,
|
||
|
False,
|
||
|
0.0,
|
||
|
series_uid,
|
||
|
candidateCenter_xyz,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
candidateInfo_list.sort(reverse=True)
|
||
|
return candidateInfo_list
|
||
|
|
||
|
@functools.lru_cache(1)
|
||
|
def getCandidateInfoDict(requireOnDisk_bool=True):
|
||
|
candidateInfo_list = getCandidateInfoList(requireOnDisk_bool)
|
||
|
candidateInfo_dict = {}
|
||
|
|
||
|
for candidateInfo_tup in candidateInfo_list:
|
||
|
candidateInfo_dict.setdefault(candidateInfo_tup.series_uid,
|
||
|
[]).append(candidateInfo_tup)
|
||
|
|
||
|
return candidateInfo_dict
|
||
|
|
||
|
class Ct:
|
||
|
def __init__(self, series_uid):
|
||
|
mhd_path = glob.glob(
|
||
|
'data-unversioned/subset*/{}.mhd'.format(series_uid)
|
||
|
)[0]
|
||
|
|
||
|
ct_mhd = sitk.ReadImage(mhd_path)
|
||
|
self.hu_a = np.array(sitk.GetArrayFromImage(ct_mhd), dtype=np.float32)
|
||
|
|
||
|
# CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale
|
||
|
# HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0.
|
||
|
|
||
|
self.series_uid = series_uid
|
||
|
|
||
|
self.origin_xyz = XyzTuple(*ct_mhd.GetOrigin())
|
||
|
self.vxSize_xyz = XyzTuple(*ct_mhd.GetSpacing())
|
||
|
self.direction_a = np.array(ct_mhd.GetDirection()).reshape(3, 3)
|
||
|
|
||
|
candidateInfo_list = getCandidateInfoDict()[self.series_uid]
|
||
|
|
||
|
self.positiveInfo_list = [
|
||
|
candidate_tup
|
||
|
for candidate_tup in candidateInfo_list
|
||
|
if candidate_tup.isNodule_bool
|
||
|
]
|
||
|
self.positive_mask = self.buildAnnotationMask(self.positiveInfo_list)
|
||
|
self.positive_indexes = (self.positive_mask.sum(axis=(1,2))
|
||
|
.nonzero()[0].tolist())
|
||
|
|
||
|
def buildAnnotationMask(self, positiveInfo_list, threshold_hu = -700):
|
||
|
boundingBox_a = np.zeros_like(self.hu_a, dtype=np.bool)
|
||
|
|
||
|
for candidateInfo_tup in positiveInfo_list:
|
||
|
center_irc = xyz2irc(
|
||
|
candidateInfo_tup.center_xyz,
|
||
|
self.origin_xyz,
|
||
|
self.vxSize_xyz,
|
||
|
self.direction_a,
|
||
|
)
|
||
|
ci = int(center_irc.index)
|
||
|
cr = int(center_irc.row)
|
||
|
cc = int(center_irc.col)
|
||
|
|
||
|
index_radius = 2
|
||
|
try:
|
||
|
while self.hu_a[ci + index_radius, cr, cc] > threshold_hu and \
|
||
|
self.hu_a[ci - index_radius, cr, cc] > threshold_hu:
|
||
|
index_radius += 1
|
||
|
except IndexError:
|
||
|
index_radius -= 1
|
||
|
|
||
|
row_radius = 2
|
||
|
try:
|
||
|
while self.hu_a[ci, cr + row_radius, cc] > threshold_hu and \
|
||
|
self.hu_a[ci, cr - row_radius, cc] > threshold_hu:
|
||
|
row_radius += 1
|
||
|
except IndexError:
|
||
|
row_radius -= 1
|
||
|
|
||
|
col_radius = 2
|
||
|
try:
|
||
|
while self.hu_a[ci, cr, cc + col_radius] > threshold_hu and \
|
||
|
self.hu_a[ci, cr, cc - col_radius] > threshold_hu:
|
||
|
col_radius += 1
|
||
|
except IndexError:
|
||
|
col_radius -= 1
|
||
|
|
||
|
# assert index_radius > 0, repr([candidateInfo_tup.center_xyz, center_irc, self.hu_a[ci, cr, cc]])
|
||
|
# assert row_radius > 0
|
||
|
# assert col_radius > 0
|
||
|
|
||
|
boundingBox_a[
|
||
|
ci - index_radius: ci + index_radius + 1,
|
||
|
cr - row_radius: cr + row_radius + 1,
|
||
|
cc - col_radius: cc + col_radius + 1] = True
|
||
|
|
||
|
mask_a = boundingBox_a & (self.hu_a > threshold_hu)
|
||
|
|
||
|
return mask_a
|
||
|
|
||
|
def getRawCandidate(self, center_xyz, width_irc):
|
||
|
center_irc = xyz2irc(center_xyz, self.origin_xyz, self.vxSize_xyz,
|
||
|
self.direction_a)
|
||
|
|
||
|
slice_list = []
|
||
|
for axis, center_val in enumerate(center_irc):
|
||
|
start_ndx = int(round(center_val - width_irc[axis]/2))
|
||
|
end_ndx = int(start_ndx + width_irc[axis])
|
||
|
|
||
|
assert center_val >= 0 and center_val < self.hu_a.shape[axis], repr([self.series_uid, center_xyz, self.origin_xyz, self.vxSize_xyz, center_irc, axis])
|
||
|
|
||
|
if start_ndx < 0:
|
||
|
# log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
|
||
|
# self.series_uid, center_xyz, center_irc, self.hu_a.shape, width_irc))
|
||
|
start_ndx = 0
|
||
|
end_ndx = int(width_irc[axis])
|
||
|
|
||
|
if end_ndx > self.hu_a.shape[axis]:
|
||
|
# log.warning("Crop outside of CT array: {} {}, center:{} shape:{} width:{}".format(
|
||
|
# self.series_uid, center_xyz, center_irc, self.hu_a.shape, width_irc))
|
||
|
end_ndx = self.hu_a.shape[axis]
|
||
|
start_ndx = int(self.hu_a.shape[axis] - width_irc[axis])
|
||
|
|
||
|
slice_list.append(slice(start_ndx, end_ndx))
|
||
|
|
||
|
ct_chunk = self.hu_a[tuple(slice_list)]
|
||
|
pos_chunk = self.positive_mask[tuple(slice_list)]
|
||
|
|
||
|
return ct_chunk, pos_chunk, center_irc
|
||
|
|
||
|
@functools.lru_cache(1, typed=True)
|
||
|
def getCt(series_uid):
|
||
|
return Ct(series_uid)
|
||
|
|
||
|
@raw_cache.memoize(typed=True)
|
||
|
def getCtRawCandidate(series_uid, center_xyz, width_irc):
|
||
|
ct = getCt(series_uid)
|
||
|
ct_chunk, pos_chunk, center_irc = ct.getRawCandidate(center_xyz,
|
||
|
width_irc)
|
||
|
ct_chunk.clip(-1000, 1000, ct_chunk)
|
||
|
return ct_chunk, pos_chunk, center_irc
|
||
|
|
||
|
@raw_cache.memoize(typed=True)
|
||
|
def getCtSampleSize(series_uid):
|
||
|
ct = Ct(series_uid)
|
||
|
return int(ct.hu_a.shape[0]), ct.positive_indexes
|
||
|
|
||
|
|
||
|
class Luna2dSegmentationDataset(Dataset):
|
||
|
def __init__(self,
|
||
|
val_stride=0,
|
||
|
isValSet_bool=None,
|
||
|
series_uid=None,
|
||
|
contextSlices_count=3,
|
||
|
fullCt_bool=False,
|
||
|
):
|
||
|
self.contextSlices_count = contextSlices_count
|
||
|
self.fullCt_bool = fullCt_bool
|
||
|
|
||
|
if series_uid:
|
||
|
self.series_list = [series_uid]
|
||
|
else:
|
||
|
self.series_list = sorted(getCandidateInfoDict().keys())
|
||
|
|
||
|
if isValSet_bool:
|
||
|
assert val_stride > 0, val_stride
|
||
|
self.series_list = self.series_list[::val_stride]
|
||
|
assert self.series_list
|
||
|
elif val_stride > 0:
|
||
|
del self.series_list[::val_stride]
|
||
|
assert self.series_list
|
||
|
|
||
|
self.sample_list = []
|
||
|
for series_uid in self.series_list:
|
||
|
index_count, positive_indexes = getCtSampleSize(series_uid)
|
||
|
|
||
|
if self.fullCt_bool:
|
||
|
self.sample_list += [(series_uid, slice_ndx)
|
||
|
for slice_ndx in range(index_count)]
|
||
|
else:
|
||
|
self.sample_list += [(series_uid, slice_ndx)
|
||
|
for slice_ndx in positive_indexes]
|
||
|
|
||
|
self.candidateInfo_list = getCandidateInfoList()
|
||
|
|
||
|
series_set = set(self.series_list)
|
||
|
self.candidateInfo_list = [cit for cit in self.candidateInfo_list
|
||
|
if cit.series_uid in series_set]
|
||
|
|
||
|
self.pos_list = [nt for nt in self.candidateInfo_list
|
||
|
if nt.isNodule_bool]
|
||
|
|
||
|
log.info("{!r}: {} {} series, {} slices, {} nodules".format(
|
||
|
self,
|
||
|
len(self.series_list),
|
||
|
{None: 'general', True: 'validation', False: 'training'}[isValSet_bool],
|
||
|
len(self.sample_list),
|
||
|
len(self.pos_list),
|
||
|
))
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.sample_list)
|
||
|
|
||
|
def __getitem__(self, ndx):
|
||
|
series_uid, slice_ndx = self.sample_list[ndx % len(self.sample_list)]
|
||
|
return self.getitem_fullSlice(series_uid, slice_ndx)
|
||
|
|
||
|
def getitem_fullSlice(self, series_uid, slice_ndx):
|
||
|
ct = getCt(series_uid)
|
||
|
ct_t = torch.zeros((self.contextSlices_count * 2 + 1, 512, 512))
|
||
|
|
||
|
start_ndx = slice_ndx - self.contextSlices_count
|
||
|
end_ndx = slice_ndx + self.contextSlices_count + 1
|
||
|
for i, context_ndx in enumerate(range(start_ndx, end_ndx)):
|
||
|
context_ndx = max(context_ndx, 0)
|
||
|
context_ndx = min(context_ndx, ct.hu_a.shape[0] - 1)
|
||
|
ct_t[i] = torch.from_numpy(ct.hu_a[context_ndx].astype(np.float32))
|
||
|
|
||
|
# CTs are natively expressed in https://en.wikipedia.org/wiki/Hounsfield_scale
|
||
|
# HU are scaled oddly, with 0 g/cc (air, approximately) being -1000 and 1 g/cc (water) being 0.
|
||
|
# The lower bound gets rid of negative density stuff used to indicate out-of-FOV
|
||
|
# The upper bound nukes any weird hotspots and clamps bone down
|
||
|
ct_t.clamp_(-1000, 1000)
|
||
|
|
||
|
pos_t = torch.from_numpy(ct.positive_mask[slice_ndx]).unsqueeze(0)
|
||
|
|
||
|
return ct_t, pos_t, ct.series_uid, slice_ndx
|
||
|
|
||
|
|
||
|
class TrainingLuna2dSegmentationDataset(Luna2dSegmentationDataset):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
self.ratio_int = 2
|
||
|
|
||
|
def __len__(self):
|
||
|
return 300000
|
||
|
|
||
|
def shuffleSamples(self):
|
||
|
random.shuffle(self.candidateInfo_list)
|
||
|
random.shuffle(self.pos_list)
|
||
|
|
||
|
def __getitem__(self, ndx):
|
||
|
candidateInfo_tup = self.pos_list[ndx % len(self.pos_list)]
|
||
|
return self.getitem_trainingCrop(candidateInfo_tup)
|
||
|
|
||
|
def getitem_trainingCrop(self, candidateInfo_tup):
|
||
|
ct_a, pos_a, center_irc = getCtRawCandidate(
|
||
|
candidateInfo_tup.series_uid,
|
||
|
candidateInfo_tup.center_xyz,
|
||
|
(7, 96, 96),
|
||
|
)
|
||
|
pos_a = pos_a[3:4]
|
||
|
|
||
|
row_offset = random.randrange(0,32)
|
||
|
col_offset = random.randrange(0,32)
|
||
|
ct_t = torch.from_numpy(ct_a[:, row_offset:row_offset+64,
|
||
|
col_offset:col_offset+64]).to(torch.float32)
|
||
|
pos_t = torch.from_numpy(pos_a[:, row_offset:row_offset+64,
|
||
|
col_offset:col_offset+64]).to(torch.long)
|
||
|
|
||
|
slice_ndx = center_irc.index
|
||
|
|
||
|
return ct_t, pos_t, candidateInfo_tup.series_uid, slice_ndx
|
||
|
|
||
|
class PrepcacheLunaDataset(Dataset):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
self.candidateInfo_list = getCandidateInfoList()
|
||
|
self.pos_list = [nt for nt in self.candidateInfo_list if nt.isNodule_bool]
|
||
|
|
||
|
self.seen_set = set()
|
||
|
self.candidateInfo_list.sort(key=lambda x: x.series_uid)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.candidateInfo_list)
|
||
|
|
||
|
def __getitem__(self, ndx):
|
||
|
# candidate_t, pos_t, series_uid, center_t = super().__getitem__(ndx)
|
||
|
|
||
|
candidateInfo_tup = self.candidateInfo_list[ndx]
|
||
|
getCtRawCandidate(candidateInfo_tup.series_uid, candidateInfo_tup.center_xyz, (7, 96, 96))
|
||
|
|
||
|
series_uid = candidateInfo_tup.series_uid
|
||
|
if series_uid not in self.seen_set:
|
||
|
self.seen_set.add(series_uid)
|
||
|
|
||
|
getCtSampleSize(series_uid)
|
||
|
# ct = getCt(series_uid)
|
||
|
# for mask_ndx in ct.positive_indexes:
|
||
|
# build2dLungMask(series_uid, mask_ndx)
|
||
|
|
||
|
return 0, 1 #candidate_t, pos_t, series_uid, center_t
|
||
|
|
||
|
|
||
|
class TvTrainingLuna2dSegmentationDataset(torch.utils.data.Dataset):
|
||
|
def __init__(self, isValSet_bool=False, val_stride=10, contextSlices_count=3):
|
||
|
assert contextSlices_count == 3
|
||
|
data = torch.load('./imgs_and_masks.pt')
|
||
|
suids = list(set(data['suids']))
|
||
|
trn_mask_suids = torch.arange(len(suids)) % val_stride < (val_stride - 1)
|
||
|
trn_suids = {s for i, s in zip(trn_mask_suids, suids) if i}
|
||
|
trn_mask = torch.tensor([(s in trn_suids) for s in data["suids"]])
|
||
|
if not isValSet_bool:
|
||
|
self.imgs = data["imgs"][trn_mask]
|
||
|
self.masks = data["masks"][trn_mask]
|
||
|
self.suids = [s for s, i in zip(data["suids"], trn_mask) if i]
|
||
|
else:
|
||
|
self.imgs = data["imgs"][~trn_mask]
|
||
|
self.masks = data["masks"][~trn_mask]
|
||
|
self.suids = [s for s, i in zip(data["suids"], trn_mask) if not i]
|
||
|
# discard spurious hotspots and clamp bone
|
||
|
self.imgs.clamp_(-1000, 1000)
|
||
|
self.imgs /= 1000
|
||
|
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.imgs)
|
||
|
|
||
|
def __getitem__(self, i):
|
||
|
oh, ow = torch.randint(0, 32, (2,))
|
||
|
sl = self.masks.size(1)//2
|
||
|
return self.imgs[i, :, oh: oh + 64, ow: ow + 64], 1, self.masks[i, sl: sl+1, oh: oh + 64, ow: ow + 64].to(torch.float32), self.suids[i], 9999
|