1. Napíšte prehľad existujúcich jazykových modelov pre generovanie slovenského jazyka.
2. Získajte a pripravte korpus dát pre úlohu generovania odpovedí v slovenskom jazyku. Vyberte vhodný zdroj a pripravte ho do podoby vhodnej na trénovanie neurónových sietí. Sumarizujte získané dáta v tabuľke.
3. Natrénujte neurónovú sieť pre úlohu generovania odpovede a vyhodnoťte výsledky.
4. Vyhodnoťte experimenty, identifikujte slabé miesta a navrhnite vylepšenia.
- Získané dáta z GymBeam. Selenium Scraper je veľmi pomalý, nevieme prečo.
- Vyskúšané ChatGPT API s dátami čo máme. Odpoveď je zatiaľ po anglicky.
- Na prevod z csv do json je použitá LLAMA.
Úlohy:
- Na vyhdonotenie je potrebné rozdeliť dáta na dve časti, trénovaciu a testovaciu. Testovacie dáta vynechajte z trénovania. Sledujte čo generuje model a porovnajte to s tým čo je očakávané v dátach. Ako metriku porovnania použite ROUGE alebo BLEU.
- Výsledky dajte do tabuľky do práce.
- Pokračujte v písaní práce.
- Pokračujte v získavaní a príprave dát.
Zásobník:
- Na rovnakých dátach natrénujte "lokálny model" pomocou skriptov Huggingface (machine translation) - mt5-base, llama-7B-4bit . Musíte nainštalovať transformers zo zdrojákov. Musíte si vytvoriť nové virtuálne prostredie a najprv nainštalovať pytorch.
- Z webu získajte vhodnú sadu otázok a odpovedí. Uložte ju vo formáte json - jeden dokument na jede riadok. Využite Váš scraper. Ako zdroj skúste použiť Otázky zákazníkov z GymBeam. Uložte - v jednom dokumente by mal byť informácie o produktem otázky aj odpovede. Ak sa to nepodarí, zamerajte sa na iný zdroj dát. Napríklad https://www.modrastrecha.sk/forum/ , alebo https://www.modrykonik.sk/forum.
- Skúste dotrénovať model ChatGPT. Využijeme kredity [Azure pre študentov](https://azureforeducation.microsoft.com/devtools) . Prihlásite sa ako študent do MAISU. Prejdite si [tutoriál](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo&pivots=programming-language-studio). Dávajte pozor, aby ste si nevyčerpali študentské kredity.
- Zistite, ako funguje ChatGPT a ako ho dotrénovať. Prečítajte si niekoľko blogov a napíšte si poznámky. Použite aj odkazy na odborné články.
- Preštudujte si knihu https://d2l.ai/ a napíšte si z nej poznámky.
- Zistite ako funguje model T5 a model BART a napíšte o tom správu na 3 strany. Odborné články vyhľadajte na Google Scholar. Do správy zapíšte ktoré odborné články ste prečítali.
- Nainštalujte si prostredie Anaconda.
- Nainštalujte si knižnicu HF transformers, prejdite si základný tutoriál.
- Prejdite si tutoriál https://huggingface.co/docs/transformers/tasks/summarization
- [ ] Prečítajte si článok "Survey of Automatic Spelling Correction" a napíšte z neho poznámky na cca 2 strany.
- [ ] Prečítajte si článok Comparison of recurrent neural networks for slovak punctuation restoration.
- [ ] Zistite, ako funguje neurónový strojový preklad. Prečítajte si niekoľko blogov a napíšte si poznámky na jednu stranu, uveďte aj odkazy na články. Kľúčové slovíčko je enkóder-dekóder architektúra.
- [x] Nainštalujte si systém Anaconda.
- [-] Nainštalujte si knižnicu Pytorch
Zásobník úloh:
- [ ] Nainštalujte si systém Fairseq
- [ ] Prejdite si aspoň jeden fairseq tutoriál, napr. https://fairseq.readthedocs.io/en/latest/tutorial_simple_lstm.html