/* * Copyright (c) 2012-2020 MIRACL UK Ltd. * * This file is part of MIRACL Core * (see https://github.com/miracl/core). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* CORE Weierstrass elliptic curve functions over FP2 */ /* SU=m, m is Stack Usage */ #include "ecp2_ZZZ.h" #include "ecp_ZZZ.h" using namespace XXX; using namespace YYY; int ZZZ::ECP2_isinf(ECP2 *P) { return (FP2_iszilch(&(P->x)) & FP2_iszilch(&(P->z))); } /* Set P=Q */ /* SU= 16 */ void ZZZ::ECP2_copy(ECP2 *P, ECP2 *Q) { FP2_copy(&(P->x), &(Q->x)); FP2_copy(&(P->y), &(Q->y)); FP2_copy(&(P->z), &(Q->z)); } /* set P to Infinity */ /* SU= 8 */ void ZZZ::ECP2_inf(ECP2 *P) { FP2_zero(&(P->x)); FP2_one(&(P->y)); FP2_zero(&(P->z)); } /* Conditional move Q to P dependant on d */ static void ECP2_cmove(ZZZ::ECP2 *P, ZZZ::ECP2 *Q, int d) { FP2_cmove(&(P->x), &(Q->x), d); FP2_cmove(&(P->y), &(Q->y), d); FP2_cmove(&(P->z), &(Q->z), d); } /* return 1 if b==c, no branching */ static int teq(sign32 b, sign32 c) { sign32 x = b ^ c; x -= 1; // if x=0, x now -1 return (int)((x >> 31) & 1); } /* Constant time select from pre-computed table */ static void ECP2_select(ZZZ::ECP2 *P, ZZZ::ECP2 W[], sign32 b) { ZZZ::ECP2 MP; sign32 m = b >> 31; sign32 babs = (b ^ m) - m; babs = (babs - 1) / 2; ECP2_cmove(P, &W[0], teq(babs, 0)); // conditional move ECP2_cmove(P, &W[1], teq(babs, 1)); ECP2_cmove(P, &W[2], teq(babs, 2)); ECP2_cmove(P, &W[3], teq(babs, 3)); ECP2_cmove(P, &W[4], teq(babs, 4)); ECP2_cmove(P, &W[5], teq(babs, 5)); ECP2_cmove(P, &W[6], teq(babs, 6)); ECP2_cmove(P, &W[7], teq(babs, 7)); ECP2_copy(&MP, P); ECP2_neg(&MP); // minus P ECP2_cmove(P, &MP, (int)(m & 1)); } /* return 1 if P==Q, else 0 */ /* SU= 312 */ int ZZZ::ECP2_equals(ECP2 *P, ECP2 *Q) { FP2 a, b; FP2_mul(&a, &(P->x), &(Q->z)); FP2_mul(&b, &(Q->x), &(P->z)); if (!FP2_equals(&a, &b)) return 0; FP2_mul(&a, &(P->y), &(Q->z)); FP2_mul(&b, &(Q->y), &(P->z)); if (!FP2_equals(&a, &b)) return 0; return 1; } /* Make P affine (so z=1) */ /* SU= 232 */ void ZZZ::ECP2_affine(ECP2 *P) { FP2 one, iz; if (ECP2_isinf(P)) return; FP2_one(&one); if (FP2_isunity(&(P->z))) { FP2_reduce(&(P->x)); FP2_reduce(&(P->y)); return; } FP2_inv(&iz, &(P->z), NULL); FP2_mul(&(P->x), &(P->x), &iz); FP2_mul(&(P->y), &(P->y), &iz); FP2_reduce(&(P->x)); FP2_reduce(&(P->y)); FP2_copy(&(P->z), &one); } /* extract x, y from point P */ /* SU= 16 */ int ZZZ::ECP2_get(FP2 *x, FP2 *y, ECP2 *P) { ECP2 W; ECP2_copy(&W, P); ECP2_affine(&W); if (ECP2_isinf(&W)) return -1; FP2_copy(y, &(W.y)); FP2_copy(x, &(W.x)); return 0; } /* SU= 152 */ /* Output point P */ void ZZZ::ECP2_output(ECP2 *P) { FP2 x, y; if (ECP2_isinf(P)) { printf("Infinity\n"); return; } ECP2_get(&x, &y, P); printf("("); FP2_output(&x); printf(","); FP2_output(&y); printf(")\n"); } /* SU= 232 */ void ZZZ::ECP2_outputxyz(ECP2 *P) { ECP2 Q; if (ECP2_isinf(P)) { printf("Infinity\n"); return; } ECP2_copy(&Q, P); printf("("); FP2_output(&(Q.x)); printf(","); FP2_output(&(Q.y)); printf(","); FP2_output(&(Q.z)); printf(")\n"); } /* SU= 168 */ /* Convert Q to octet string */ void ZZZ::ECP2_toOctet(octet *W, ECP2 *Q, bool compress) { FP2 qx, qy; bool alt=false; ECP2_get(&qx, &qy, Q); #if (MBITS-1)%8 <= 4 #ifdef ALLOW_ALT_COMPRESS_ZZZ alt=true; #endif #endif if (alt) { FP2_toBytes(&(W->val[0]),&qx); if (!compress) { W->len=4*MODBYTES_XXX; FP2_toBytes(&(W->val[2*MODBYTES_XXX]), &qy); } else { W->val[0]|=0x80; if (FP2_islarger(&qy)==1) W->val[0]|=0x20; W->len=2*MODBYTES_XXX; } } else { FP2_toBytes(&(W->val[1]),&qx); if (!compress) { W->val[0] = 0x04; FP2_toBytes(&(W->val[2 * MODBYTES_XXX+1]), &qy); W->len = 4 * MODBYTES_XXX + 1; } else { W->val[0]=0x02; if (FP2_sign(&qy)==1) W->val[0] = 0x03; W->len = 2 * MODBYTES_XXX + 1; } } } /* SU= 176 */ /* restore Q from octet string */ int ZZZ::ECP2_fromOctet(ECP2 *Q, octet *W) { FP2 qx, qy; bool alt=false; int sgn,cmp,typ = W->val[0]; #if (MBITS-1)%8 <= 4 #ifdef ALLOW_ALT_COMPRESS_ZZZ alt=true; #endif #endif if (alt) { W->val[0]&=0x1f; FP2_fromBytes(&qx,&(W->val[0])); W->val[0]=typ; if ((typ&0x80)==0) { FP2_fromBytes(&qy,&(W->val[2*MODBYTES_XXX])); if (ECP2_set(Q, &qx, &qy)) return 1; return 0; } else { if (!ECP2_setx(Q,&qx,0)) return 0; sgn=(typ&0x20)>>5; cmp=FP2_islarger(&(Q->y)); if ((sgn==1 && cmp!=1) || (sgn==0 && cmp==1)) ECP2_neg(Q); return 1; } } else { FP2_fromBytes(&qx,&(W->val[1])); if (typ == 0x04) { FP2_fromBytes(&qy,&(W->val[2 * MODBYTES_XXX+1])); if (ECP2_set(Q, &qx, &qy)) return 1; } else { if (ECP2_setx(Q, &qx, typ&1)) return 1; } } return 0; } /* SU= 128 */ /* Calculate RHS of twisted curve equation x^3+B/i or x^3+Bi*/ void ZZZ::ECP2_rhs(FP2 *rhs, FP2 *x) { /* calculate RHS of elliptic curve equation */ FP2 t; BIG b; FP2_sqr(&t, x); FP2_mul(rhs, &t, x); /* Assuming CURVE_A=0 */ BIG_rcopy(b, CURVE_B); FP2_from_BIG(&t, b); #if SEXTIC_TWIST_ZZZ == D_TYPE FP2_div_ip(&t); /* IMPORTANT - here we use the correct SEXTIC twist of the curve */ #endif #if SEXTIC_TWIST_ZZZ == M_TYPE FP2_norm(&t); FP2_mul_ip(&t); /* IMPORTANT - here we use the correct SEXTIC twist of the curve */ FP2_norm(&t); #endif FP2_add(rhs, &t, rhs); FP2_reduce(rhs); } /* Set P=(x,y). Return 1 if (x,y) is on the curve, else return 0*/ /* SU= 232 */ int ZZZ::ECP2_set(ECP2 *P, FP2 *x, FP2 *y) { FP2 rhs, y2; FP2_sqr(&y2, y); ECP2_rhs(&rhs, x); if (!FP2_equals(&y2, &rhs)) { ECP2_inf(P); return 0; } FP2_copy(&(P->x), x); FP2_copy(&(P->y), y); FP2_one(&(P->z)); return 1; } /* Set P=(x,y). Return 1 if (x,.) is on the curve, else return 0 */ /* SU= 232 */ int ZZZ::ECP2_setx(ECP2 *P, FP2 *x, int s) { FP2 y; FP hint; ECP2_rhs(&y, x); if (!FP2_qr(&y,&hint)) { ECP2_inf(P); return 0; } FP2_sqrt(&y,&y,&hint); FP2_copy(&(P->x), x); FP2_copy(&(P->y), &y); FP2_one(&(P->z)); if (FP2_sign(&(P->y)) != s) FP2_neg(&(P->y),&(P->y)); FP2_reduce(&(P->y)); return 1; } /* Set P=-P */ /* SU= 8 */ void ZZZ::ECP2_neg(ECP2 *P) { FP2_norm(&(P->y)); FP2_neg(&(P->y), &(P->y)); FP2_norm(&(P->y)); } /* R+=R */ /* return -1 for Infinity, 0 for addition, 1 for doubling */ /* SU= 448 */ int ZZZ::ECP2_dbl(ECP2 *P) { FP2 t0, t1, t2, iy, x3, y3; FP2_copy(&iy, &(P->y)); //FP2 iy=new FP2(y); #if SEXTIC_TWIST_ZZZ==D_TYPE FP2_mul_ip(&iy); //iy.mul_ip(); FP2_norm(&iy); //iy.norm(); #endif FP2_sqr(&t0, &(P->y)); //t0.sqr(); #if SEXTIC_TWIST_ZZZ==D_TYPE FP2_mul_ip(&t0); //t0.mul_ip(); #endif FP2_mul(&t1, &iy, &(P->z)); //t1.mul(z); FP2_sqr(&t2, &(P->z)); //t2.sqr(); FP2_add(&(P->z), &t0, &t0); //z.add(t0); FP2_norm(&(P->z)); //z.norm(); FP2_add(&(P->z), &(P->z), &(P->z)); //z.add(z); FP2_add(&(P->z), &(P->z), &(P->z)); //z.add(z); FP2_norm(&(P->z)); //z.norm(); FP2_imul(&t2, &t2, 3 * CURVE_B_I); //t2.imul(3*ROM.CURVE_B_I); #if SEXTIC_TWIST_ZZZ==M_TYPE FP2_mul_ip(&t2); FP2_norm(&t2); #endif FP2_mul(&x3, &t2, &(P->z)); //x3.mul(z); FP2_add(&y3, &t0, &t2); //y3.add(t2); FP2_norm(&y3); //y3.norm(); FP2_mul(&(P->z), &(P->z), &t1); //z.mul(t1); FP2_add(&t1, &t2, &t2); //t1.add(t2); FP2_add(&t2, &t2, &t1); //t2.add(t1); FP2_norm(&t2); //t2.norm(); FP2_sub(&t0, &t0, &t2); //t0.sub(t2); FP2_norm(&t0); //t0.norm(); //y^2-9bz^2 FP2_mul(&y3, &y3, &t0); //y3.mul(t0); FP2_add(&(P->y), &y3, &x3); //y3.add(x3); //(y^2+3z*2)(y^2-9z^2)+3b.z^2.8y^2 FP2_mul(&t1, &(P->x), &iy); //t1.mul(iy); FP2_norm(&t0); //x.norm(); FP2_mul(&(P->x), &t0, &t1); //x.mul(t1); FP2_add(&(P->x), &(P->x), &(P->x)); //x.add(x); //(y^2-9bz^2)xy2 FP2_norm(&(P->x)); //x.norm(); FP2_norm(&(P->y)); //y.norm(); return 1; } /* Set P+=Q */ /* SU= 400 */ int ZZZ::ECP2_add(ECP2 *P, ECP2 *Q) { FP2 t0, t1, t2, t3, t4, x3, y3, z3; int b3 = 3 * CURVE_B_I; FP2_mul(&t0, &(P->x), &(Q->x)); //t0.mul(Q.x); // x.Q.x FP2_mul(&t1, &(P->y), &(Q->y)); //t1.mul(Q.y); // y.Q.y FP2_mul(&t2, &(P->z), &(Q->z)); //t2.mul(Q.z); FP2_add(&t3, &(P->x), &(P->y)); //t3.add(y); FP2_norm(&t3); //t3.norm(); //t3=X1+Y1 FP2_add(&t4, &(Q->x), &(Q->y)); //t4.add(Q.y); FP2_norm(&t4); //t4.norm(); //t4=X2+Y2 FP2_mul(&t3, &t3, &t4); //t3.mul(t4); //t3=(X1+Y1)(X2+Y2) FP2_add(&t4, &t0, &t1); //t4.add(t1); //t4=X1.X2+Y1.Y2 FP2_sub(&t3, &t3, &t4); //t3.sub(t4); FP2_norm(&t3); //t3.norm(); #if SEXTIC_TWIST_ZZZ==D_TYPE FP2_mul_ip(&t3); //t3.mul_ip(); FP2_norm(&t3); //t3.norm(); //t3=(X1+Y1)(X2+Y2)-(X1.X2+Y1.Y2) = X1.Y2+X2.Y1 #endif FP2_add(&t4, &(P->y), &(P->z)); //t4.add(z); FP2_norm(&t4); //t4.norm(); //t4=Y1+Z1 FP2_add(&x3, &(Q->y), &(Q->z)); //x3.add(Q.z); FP2_norm(&x3); //x3.norm(); //x3=Y2+Z2 FP2_mul(&t4, &t4, &x3); //t4.mul(x3); //t4=(Y1+Z1)(Y2+Z2) FP2_add(&x3, &t1, &t2); //x3.add(t2); //X3=Y1.Y2+Z1.Z2 FP2_sub(&t4, &t4, &x3); //t4.sub(x3); FP2_norm(&t4); //t4.norm(); #if SEXTIC_TWIST_ZZZ==D_TYPE FP2_mul_ip(&t4); //t4.mul_ip(); FP2_norm(&t4); //t4.norm(); //t4=(Y1+Z1)(Y2+Z2) - (Y1.Y2+Z1.Z2) = Y1.Z2+Y2.Z1 #endif FP2_add(&x3, &(P->x), &(P->z)); //x3.add(z); FP2_norm(&x3); //x3.norm(); // x3=X1+Z1 FP2_add(&y3, &(Q->x), &(Q->z)); //y3.add(Q.z); FP2_norm(&y3); //y3.norm(); // y3=X2+Z2 FP2_mul(&x3, &x3, &y3); //x3.mul(y3); // x3=(X1+Z1)(X2+Z2) FP2_add(&y3, &t0, &t2); //y3.add(t2); // y3=X1.X2+Z1+Z2 FP2_sub(&y3, &x3, &y3); //y3.rsub(x3); FP2_norm(&y3); //y3.norm(); // y3=(X1+Z1)(X2+Z2) - (X1.X2+Z1.Z2) = X1.Z2+X2.Z1 #if SEXTIC_TWIST_ZZZ==D_TYPE FP2_mul_ip(&t0); //t0.mul_ip(); FP2_norm(&t0); //t0.norm(); // x.Q.x FP2_mul_ip(&t1); //t1.mul_ip(); FP2_norm(&t1); //t1.norm(); // y.Q.y #endif FP2_add(&x3, &t0, &t0); //x3.add(t0); FP2_add(&t0, &t0, &x3); //t0.add(x3); FP2_norm(&t0); //t0.norm(); FP2_imul(&t2, &t2, b3); //t2.imul(b); #if SEXTIC_TWIST_ZZZ==M_TYPE FP2_mul_ip(&t2); FP2_norm(&t2); #endif FP2_add(&z3, &t1, &t2); //z3.add(t2); FP2_norm(&z3); //z3.norm(); FP2_sub(&t1, &t1, &t2); //t1.sub(t2); FP2_norm(&t1); //t1.norm(); FP2_imul(&y3, &y3, b3); //y3.imul(b); #if SEXTIC_TWIST_ZZZ==M_TYPE FP2_mul_ip(&y3); FP2_norm(&y3); #endif FP2_mul(&x3, &y3, &t4); //x3.mul(t4); FP2_mul(&t2, &t3, &t1); //t2.mul(t1); FP2_sub(&(P->x), &t2, &x3); //x3.rsub(t2); FP2_mul(&y3, &y3, &t0); //y3.mul(t0); FP2_mul(&t1, &t1, &z3); //t1.mul(z3); FP2_add(&(P->y), &y3, &t1); //y3.add(t1); FP2_mul(&t0, &t0, &t3); //t0.mul(t3); FP2_mul(&z3, &z3, &t4); //z3.mul(t4); FP2_add(&(P->z), &z3, &t0); //z3.add(t0); FP2_norm(&(P->x)); //x.norm(); FP2_norm(&(P->y)); //y.norm(); FP2_norm(&(P->z)); //z.norm(); return 0; } /* Set P-=Q */ /* SU= 16 */ void ZZZ::ECP2_sub(ECP2 *P, ECP2 *Q) { ECP2 NQ; ECP2_copy(&NQ, Q); ECP2_neg(&NQ); ECP2_add(P, &NQ); } /* P*=e */ /* SU= 280 */ void ZZZ::ECP2_mul(ECP2 *P, BIG e) { /* fixed size windows */ int i, nb, s, ns; BIG mt, t; ECP2 Q, W[8], C; sign8 w[1 + (NLEN_XXX * BASEBITS_XXX + 3) / 4]; if (ECP2_isinf(P)) return; /* precompute table */ ECP2_copy(&Q, P); ECP2_dbl(&Q); ECP2_copy(&W[0], P); for (i = 1; i < 8; i++) { ECP2_copy(&W[i], &W[i - 1]); ECP2_add(&W[i], &Q); } /* make exponent odd - add 2P if even, P if odd */ BIG_copy(t, e); s = BIG_parity(t); BIG_inc(t, 1); BIG_norm(t); ns = BIG_parity(t); BIG_copy(mt, t); BIG_inc(mt, 1); BIG_norm(mt); BIG_cmove(t, mt, s); ECP2_cmove(&Q, P, ns); ECP2_copy(&C, &Q); nb = 1 + (BIG_nbits(t) + 3) / 4; /* convert exponent to signed 4-bit window */ for (i = 0; i < nb; i++) { w[i] = BIG_lastbits(t, 5) - 16; BIG_dec(t, w[i]); BIG_norm(t); BIG_fshr(t, 4); } w[nb] = BIG_lastbits(t, 5); //ECP2_copy(P, &W[(w[nb] - 1) / 2]); ECP2_select(P, W, w[nb]); for (i = nb - 1; i >= 0; i--) { ECP2_select(&Q, W, w[i]); ECP2_dbl(P); ECP2_dbl(P); ECP2_dbl(P); ECP2_dbl(P); ECP2_add(P, &Q); } ECP2_sub(P, &C); /* apply correction */ } /* Calculates q.P using Frobenius constant X */ /* SU= 96 */ void ZZZ::ECP2_frob(ECP2 *P, FP2 *X) { FP2 X2; FP2_sqr(&X2, X); FP2_conj(&(P->x), &(P->x)); FP2_conj(&(P->y), &(P->y)); FP2_conj(&(P->z), &(P->z)); FP2_reduce(&(P->z)); FP2_mul(&(P->x), &X2, &(P->x)); FP2_mul(&(P->y), &X2, &(P->y)); FP2_mul(&(P->y), X, &(P->y)); } // Bos & Costello https://eprint.iacr.org/2013/458.pdf // Faz-Hernandez & Longa & Sanchez https://eprint.iacr.org/2013/158.pdf // Side channel attack secure void ZZZ::ECP2_mul4(ECP2 *P, ECP2 Q[4], BIG u[4]) { int i, j, k, nb, pb, bt; ECP2 T[8], W; BIG t[4], mt; sign8 w[NLEN_XXX * BASEBITS_XXX + 1]; sign8 s[NLEN_XXX * BASEBITS_XXX + 1]; for (i = 0; i < 4; i++) { BIG_copy(t[i], u[i]); } // Precomputed table ECP2_copy(&T[0], &Q[0]); // Q[0] ECP2_copy(&T[1], &T[0]); ECP2_add(&T[1], &Q[1]); // Q[0]+Q[1] ECP2_copy(&T[2], &T[0]); ECP2_add(&T[2], &Q[2]); // Q[0]+Q[2] ECP2_copy(&T[3], &T[1]); ECP2_add(&T[3], &Q[2]); // Q[0]+Q[1]+Q[2] ECP2_copy(&T[4], &T[0]); ECP2_add(&T[4], &Q[3]); // Q[0]+Q[3] ECP2_copy(&T[5], &T[1]); ECP2_add(&T[5], &Q[3]); // Q[0]+Q[1]+Q[3] ECP2_copy(&T[6], &T[2]); ECP2_add(&T[6], &Q[3]); // Q[0]+Q[2]+Q[3] ECP2_copy(&T[7], &T[3]); ECP2_add(&T[7], &Q[3]); // Q[0]+Q[1]+Q[2]+Q[3] // Make it odd pb = 1 - BIG_parity(t[0]); BIG_inc(t[0], pb); BIG_norm(t[0]); // Number of bits BIG_zero(mt); for (i = 0; i < 4; i++) { BIG_or(mt, mt, t[i]); } nb = 1 + BIG_nbits(mt); // Sign pivot s[nb - 1] = 1; for (i = 0; i < nb - 1; i++) { BIG_fshr(t[0], 1); s[i] = 2 * BIG_parity(t[0]) - 1; } // Recoded exponent for (i = 0; i < nb; i++) { w[i] = 0; k = 1; for (j = 1; j < 4; j++) { bt = s[i] * BIG_parity(t[j]); BIG_fshr(t[j], 1); BIG_dec(t[j], (bt >> 1)); BIG_norm(t[j]); w[i] += bt * k; k *= 2; } } // Main loop ECP2_select(P, T, 2 * w[nb - 1] + 1); for (i = nb - 2; i >= 0; i--) { ECP2_select(&W, T, 2 * w[i] + s[i]); ECP2_dbl(P); ECP2_add(P, &W); } // apply correction ECP2_copy(&W, P); ECP2_sub(&W, &Q[0]); ECP2_cmove(P, &W, pb); } /* Hunt and Peck a BIG to G2 curve point */ /* void ZZZ::ECP2_hap2point(ECP2 *Q,BIG h) { BIG one,hv; FP2 X; BIG_one(one); BIG_copy(hv,h); for (;;) { FP2_from_BIGs(&X,one,hv); if (ECP2_setx(Q,&X,0)) break; BIG_inc(hv,1); BIG_norm(hv); } } */ /* Constant time Map FP2 to Point in G2 */ void ZZZ::ECP2_map2point(ECP2 *Q,FP2 *H) { // SSWU plus isogenies method int i,k,sgn,ne,isox,isoy,iso=HTC_ISO_G2_ZZZ; FP2 X1,X2,X3,W,Y,T,A,NY; FP s; #if HTC_ISO_G2_ZZZ != 0 FP hint; FP2 ZZ,Ad,Bd,D,D2,GX1; FP2 xnum,xden,ynum,yden; FP2_from_ints(&ZZ,RIADZG2A_ZZZ,RIADZG2B_ZZZ); FP2_rcopy(&Ad,CURVE_Adr,CURVE_Adi); FP2_rcopy(&Bd,CURVE_Bdr,CURVE_Bdi); FP2_one(&NY); FP2_copy(&T,H); sgn=FP2_sign(&T); FP2_sqr(&T,&T); FP2_mul(&T,&T,&ZZ); FP2_add(&W,&T,&NY); FP2_norm(&W); FP2_mul(&W,&W,&T); FP2_mul(&D,&Ad,&W); FP2_add(&W,&W,&NY); FP2_norm(&W); FP2_mul(&W,&W,&Bd); FP2_neg(&W,&W); FP2_norm(&W); FP2_copy(&X2,&W); // Numerators FP2_mul(&X3,&T,&X2); // x^3+Ad^2x+Bd^3 FP2_sqr(&GX1,&X2); FP2_sqr(&D2,&D); FP2_mul(&W,&Ad,&D2); FP2_add(&GX1,&GX1,&W); FP2_norm(&GX1); FP2_mul(&GX1,&GX1,&X2); FP2_mul(&D2,&D2,&D); FP2_mul(&W,&Bd,&D2); FP2_add(&GX1,&GX1,&W); FP2_norm(&GX1); FP2_mul(&W,&GX1,&D); int qr=FP2_qr(&W,&hint); // qr(ad) - only exp happens here FP2_inv(&D,&W,&hint); // d=1/(ad) FP2_mul(&D,&D,&GX1); // 1/d FP2_mul(&X2,&X2,&D); // X2/=D FP2_mul(&X3,&X3,&D); // X3/=D FP2_mul(&T,&T,H); // t=Z.u^3 FP2_sqr(&D2,&D); // first solution - X2, W, hint, D2 FP2_mul(&D,&D2,&T); // second candidate if X3 is correct FP2_mul(&T,&W,&ZZ); FP_rcopy(&s,CURVE_HTPC2); FP_mul(&s,&s,&hint); // modify hint FP2_cmove(&X2,&X3,1-qr); FP2_cmove(&W,&T,1-qr); FP2_cmove(&D2,&D,1-qr); FP_cmove(&hint,&s,1-qr); FP2_sqrt(&Y,&W,&hint); // first candidate if X2 is correct FP2_mul(&Y,&Y,&D2); ne=FP2_sign(&Y)^sgn; FP2_neg(&NY,&Y); FP2_norm(&NY); FP2_cmove(&Y,&NY,ne); // (X2,Y) is on isogenous curve k=0; isox=iso; isoy=3*(iso-1)/2; // xnum FP2_rcopy(&xnum,PCR[k],PCI[k]); k++; for (i=0;ix),&T); FP2_mul(&T,&ynum,&xden); FP2_copy(&(Q->y),&T); FP2_mul(&T,&xden,&yden); FP2_copy(&(Q->z),&T); #else // SVDW - Shallue and van de Woestijne method. FP Z; FP2_one(&NY); FP2_copy(&T,H); sgn=FP2_sign(&T); FP_from_int(&Z,RIADZG2A_YYY); FP2_from_FP(&A,&Z); ECP2_rhs(&A,&A); // A=g(Z) if (CURVE_B_I==4 && SEXTIC_TWIST_ZZZ==M_TYPE && RIADZG2A_YYY==-1 && RIADZG2B_YYY==0) { // special case for BLS12381 FP2_from_ints(&W,2,1); } else { FP2_sqrt(&W,&A,NULL); // sqrt(g(Z)) } FP_rcopy(&s,SQRTm3); FP_mul(&Z,&Z,&s); // Z.sqrt(-3) FP2_sqr(&T,&T); FP2_mul(&Y,&A,&T); // tv1=u^2*g(Z) FP2_add(&T,&NY,&Y); FP2_norm(&T); // tv2=1+tv1 FP2_sub(&Y,&NY,&Y); FP2_norm(&Y); // tv1=1-tv1 FP2_mul(&NY,&T,&Y); FP2_pmul(&NY,&NY,&Z); FP2_inv(&NY,&NY,NULL); // tv3=inv0(tv1*tv2*Z*sqrt(-3)) FP2_pmul(&W,&W,&Z); // tv4=Z*sqrt(-3).sqrt(g(Z)) if (FP2_sign(&W)==1) { FP2_neg(&W,&W); FP2_norm(&W); } FP2_pmul(&W,&W,&Z); FP2_mul(&W,&W,H); FP2_mul(&W,&W,&Y); FP2_mul(&W,&W,&NY); // tv5=u*tv1*tv3*tv4*Z*sqrt(-3) FP2_from_ints(&X1,RIADZG2A_YYY,RIADZG2B_YYY); FP2_copy(&X3,&X1); FP2_neg(&X1,&X1); FP2_norm(&X1); FP2_div2(&X1,&X1); // -Z/2 FP2_copy(&X2,&X1); FP2_sub(&X1,&X1,&W); FP2_norm(&X1); FP2_add(&X2,&X2,&W); FP2_norm(&X2); FP2_add(&A,&A,&A); FP2_add(&A,&A,&A); FP2_norm(&A); // 4*g(Z) FP2_sqr(&T,&T); FP2_mul(&T,&T,&NY); FP2_sqr(&T,&T); // (tv2^2*tv3)^2 FP2_mul(&A,&A,&T); // 4*g(Z)*(tv2^2*tv3)^2 FP2_add(&X3,&X3,&A); FP2_norm(&X3); ECP2_rhs(&W,&X2); FP2_cmove(&X3,&X2,FP2_qr(&W,NULL)); ECP2_rhs(&W,&X1); FP2_cmove(&X3,&X1,FP2_qr(&W,NULL)); ECP2_rhs(&W,&X3); FP2_sqrt(&Y,&W,NULL); ne=FP2_sign(&Y)^sgn; FP2_neg(&W,&Y); FP2_norm(&W); FP2_cmove(&Y,&W,ne); ECP2_set(Q,&X3,&Y); #endif } /* Map octet to point on G2 */ /* void ZZZ::ECP2_mapit(ECP2 *Q, octet *W) { BIG q, x; DBIG dx; BIG_rcopy(q, Modulus); BIG_dfromBytesLen(dx,W->val,W->len); BIG_dmod(x,dx,q); ECP2_hap2point(Q,x); ECP2_cfp(Q); } */ /* cofactor product */ void ZZZ::ECP2_cfp(ECP2 *Q) { // FP Fx, Fy; FP2 X; BIG x; #if (PAIRING_FRIENDLY_ZZZ == BN_CURVE) ECP2 T, K; #elif (PAIRING_FRIENDLY_ZZZ > BN_CURVE) ECP2 xQ, x2Q; #endif // FP_rcopy(&Fx, Fra); // FP_rcopy(&Fy, Frb); // FP2_from_FPs(&X, &Fx, &Fy); FP2_rcopy(&X,Fra,Frb); #if SEXTIC_TWIST_ZZZ==M_TYPE FP2_inv(&X, &X,NULL); FP2_norm(&X); #endif BIG_rcopy(x, CURVE_Bnx); #if (PAIRING_FRIENDLY_ZZZ == BN_CURVE) // Faster Hashing to G2 - Fuentes-Castaneda, Knapp and Rodriguez-Henriquez // Q -> xQ + F(3xQ) + F(F(xQ)) + F(F(F(Q))). ECP2_copy(&T, Q); ECP2_mul(&T, x); #if SIGN_OF_X_ZZZ==NEGATIVEX ECP2_neg(&T); // our x is negative #endif ECP2_copy(&K, &T); ECP2_dbl(&K); ECP2_add(&K, &T); ECP2_frob(&K, &X); ECP2_frob(Q, &X); ECP2_frob(Q, &X); ECP2_frob(Q, &X); ECP2_add(Q, &T); ECP2_add(Q, &K); ECP2_frob(&T, &X); ECP2_frob(&T, &X); ECP2_add(Q, &T); #elif (PAIRING_FRIENDLY_ZZZ > BN_CURVE) // Efficient hash maps to G2 on BLS curves - Budroni, Pintore // Q -> x2Q -xQ -Q +F(xQ -Q) +F(F(2Q)) ECP2_copy(&xQ, Q); ECP2_mul(&xQ, x); ECP2_copy(&x2Q, &xQ); ECP2_mul(&x2Q, x); #if SIGN_OF_X_ZZZ==NEGATIVEX ECP2_neg(&xQ); #endif ECP2_sub(&x2Q, &xQ); ECP2_sub(&x2Q, Q); ECP2_sub(&xQ, Q); ECP2_frob(&xQ, &X); ECP2_dbl(Q); ECP2_frob(Q, &X); ECP2_frob(Q, &X); ECP2_add(Q, &x2Q); ECP2_add(Q, &xQ); #endif } int ZZZ::ECP2_generator(ECP2 *G) { FP2 wx, wy; FP2_rcopy(&wx,CURVE_Pxa,CURVE_Pxb); FP2_rcopy(&wy,CURVE_Pya,CURVE_Pyb); // FP_rcopy(&(wx.a), CURVE_Pxa); // FP_rcopy(&(wx.b), CURVE_Pxb); // FP_rcopy(&(wy.a), CURVE_Pya); // FP_rcopy(&(wy.b), CURVE_Pyb); return ECP2_set(G, &wx, &wy); }