/* * Copyright (c) 2012-2020 MIRACL UK Ltd. * * This file is part of MIRACL Core * (see https://github.com/miracl/core). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* CORE Fp^12 functions */ /* SU=m, m is Stack Usage (no lazy )*/ /* FP12 elements are of the form a+i.b+i^2.c */ #include "fp12_YYY.h" #include "config_curve_ZZZ.h" using namespace XXX; /* return 1 if b==c, no branching */ static int teq(sign32 b, sign32 c) { sign32 x = b ^ c; x -= 1; // if x=0, x now -1 return (int)((x >> 31) & 1); } /* Constant time select from pre-computed table */ static void FP12_select(YYY::FP12 *f, YYY::FP12 g[], sign32 b) { YYY::FP12 invf; sign32 m = b >> 31; sign32 babs = (b ^ m) - m; babs = (babs - 1) / 2; FP12_cmove(f, &g[0], teq(babs, 0)); // conditional move FP12_cmove(f, &g[1], teq(babs, 1)); FP12_cmove(f, &g[2], teq(babs, 2)); FP12_cmove(f, &g[3], teq(babs, 3)); FP12_cmove(f, &g[4], teq(babs, 4)); FP12_cmove(f, &g[5], teq(babs, 5)); FP12_cmove(f, &g[6], teq(babs, 6)); FP12_cmove(f, &g[7], teq(babs, 7)); FP12_copy(&invf, f); FP12_conj(&invf, &invf); // 1/f FP12_cmove(f, &invf, (int)(m & 1)); } /* test x==0 ? */ /* SU= 8 */ int YYY::FP12_iszilch(FP12 *x) { if (FP4_iszilch(&(x->a)) && FP4_iszilch(&(x->b)) && FP4_iszilch(&(x->c))) return 1; return 0; } /* test x==1 ? */ /* SU= 8 */ int YYY::FP12_isunity(FP12 *x) { if (FP4_isunity(&(x->a)) && FP4_iszilch(&(x->b)) && FP4_iszilch(&(x->c))) return 1; return 0; } /* FP12 copy w=x */ /* SU= 16 */ void YYY::FP12_copy(FP12 *w, FP12 *x) { if (x == w) return; FP4_copy(&(w->a), &(x->a)); FP4_copy(&(w->b), &(x->b)); FP4_copy(&(w->c), &(x->c)); w->type = x->type; } /* FP12 w=1 */ /* SU= 8 */ void YYY::FP12_one(FP12 *w) { FP4_one(&(w->a)); FP4_zero(&(w->b)); FP4_zero(&(w->c)); w->type = FP_UNITY; } void YYY::FP12_zero(FP12 *w) { FP4_zero(&(w->a)); FP4_zero(&(w->b)); FP4_zero(&(w->c)); w->type = FP_ZILCH; } /* return 1 if x==y, else 0 */ /* SU= 16 */ int YYY::FP12_equals(FP12 *x, FP12 *y) { if (FP4_equals(&(x->a), &(y->a)) && FP4_equals(&(x->b), &(y->b)) && FP4_equals(&(x->c), &(y->c))) return 1; return 0; } /* Set w=conj(x) */ /* SU= 8 */ void YYY::FP12_conj(FP12 *w, FP12 *x) { FP12_copy(w, x); FP4_conj(&(w->a), &(w->a)); FP4_nconj(&(w->b), &(w->b)); FP4_conj(&(w->c), &(w->c)); } /* Create FP12 from FP4 */ /* SU= 8 */ void YYY::FP12_from_FP4(FP12 *w, FP4 *a) { FP4_copy(&(w->a), a); FP4_zero(&(w->b)); FP4_zero(&(w->c)); w->type = FP_SPARSEST; } /* Create FP12 from 3 FP4's */ /* SU= 16 */ void YYY::FP12_from_FP4s(FP12 *w, FP4 *a, FP4 *b, FP4 *c) { FP4_copy(&(w->a), a); FP4_copy(&(w->b), b); FP4_copy(&(w->c), c); w->type = FP_DENSE; } /* Granger-Scott Unitary Squaring. This does not benefit from lazy reduction */ /* SU= 600 */ void YYY::FP12_usqr(FP12 *w, FP12 *x) { FP4 A, B, C, D; FP4_copy(&A, &(x->a)); FP4_sqr(&(w->a), &(x->a)); // Wa XES=2 FP4_add(&D, &(w->a), &(w->a)); // Wa XES=4 FP4_add(&(w->a), &D, &(w->a)); // Wa XES=6 FP4_norm(&(w->a)); FP4_nconj(&A, &A); FP4_add(&A, &A, &A); FP4_add(&(w->a), &(w->a), &A); // Wa XES=8 FP4_sqr(&B, &(x->c)); FP4_times_i(&B); FP4_add(&D, &B, &B); FP4_add(&B, &B, &D); FP4_norm(&B); FP4_sqr(&C, &(x->b)); FP4_add(&D, &C, &C); FP4_add(&C, &C, &D); FP4_norm(&C); FP4_conj(&(w->b), &(x->b)); FP4_add(&(w->b), &(w->b), &(w->b)); FP4_nconj(&(w->c), &(x->c)); FP4_add(&(w->c), &(w->c), &(w->c)); FP4_add(&(w->b), &B, &(w->b)); FP4_add(&(w->c), &C, &(w->c)); w->type = FP_DENSE; //FP12_norm(w); FP12_reduce(w); /* reduce here as in pow function repeated squarings would trigger multiple reductions */ } /* FP12 squaring w=x^2 */ /* SU= 600 */ void YYY::FP12_sqr(FP12 *w, FP12 *x) { /* Use Chung-Hasan SQR2 method from http://cacr.uwaterloo.ca/techreports/2006/cacr2006-24.pdf */ FP4 A, B, C, D; if (x->type <= FP_UNITY) { FP12_copy(w, x); return; } FP4_sqr(&A, &(x->a)); FP4_mul(&B, &(x->b), &(x->c)); FP4_add(&B, &B, &B); FP4_norm(&B); FP4_sqr(&C, &(x->c)); FP4_mul(&D, &(x->a), &(x->b)); FP4_add(&D, &D, &D); FP4_add(&(w->c), &(x->a), &(x->c)); FP4_add(&(w->c), &(x->b), &(w->c)); FP4_norm(&(w->c)); FP4_sqr(&(w->c), &(w->c)); FP4_copy(&(w->a), &A); FP4_add(&A, &A, &B); FP4_norm(&A); FP4_add(&A, &A, &C); FP4_add(&A, &A, &D); FP4_norm(&A); FP4_neg(&A, &A); FP4_times_i(&B); FP4_times_i(&C); FP4_add(&(w->a), &(w->a), &B); FP4_add(&(w->b), &C, &D); FP4_add(&(w->c), &(w->c), &A); if (x->type == FP_SPARSER || x->type == FP_SPARSEST) w->type = FP_SPARSE; else w->type = FP_DENSE; FP12_norm(w); } // Use FP12_mul when both multiplicands are dense // Use FP12smul when it is known that both multiplicands are line functions // Use FP12ssmul when it is suspected that one or both multiplicands could have some sparsity /* FP12 full multiplication w=w*y */ void YYY::FP12_mul(FP12 *w, FP12 *y) { FP4 z0, z1, z2, z3, t0, t1; FP4_mul(&z0, &(w->a), &(y->a)); // xa.ya always 11x11 FP4_mul(&z2, &(w->b), &(y->b)); // xb.yb could be 00x00 or 01x01 or or 10x10 or 11x00 or 11x10 or 11x01 or 11x11 FP4_add(&t0, &(w->a), &(w->b)); // (xa+xb) FP4_add(&t1, &(y->a), &(y->b)); // (ya+yb) FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&z1, &t0, &t1); // (xa+xb)(ya+yb) always 11x11 FP4_add(&t0, &(w->b), &(w->c)); // (xb+xc) FP4_add(&t1, &(y->b), &(y->c)); // (yb+yc) FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&z3, &t0, &t1); // (xb+xc)(yb+yc) could be anything... FP4_neg(&t0, &z0); // -(xa.ya) FP4_neg(&t1, &z2); // -(xb.yb) FP4_add(&z1, &z1, &t0); FP4_add(&(w->b), &z1, &t1); // /wb = (xa+xb)(ya+yb) -(xa.ya) -(xb.yb) = xa.yb + xb.ya FP4_add(&z3, &z3, &t1); // (xb+xc)(yb+yc) -(xb.yb) FP4_add(&z2, &z2, &t0); // (xb.yb) - (xa.ya) FP4_add(&t0, &(w->a), &(w->c)); // (xa+xc) FP4_add(&t1, &(y->a), &(y->c)); // (ya+yc) FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&t0, &t1, &t0); // (xa+xc)(ya+yc) always 11x11 FP4_add(&z2, &z2, &t0); // (xb.yb) - (xa.ya) + (xa+xc)(ya+yc) FP4_mul(&t0, &(w->c), &(y->c)); // (xc.yc) could be anything FP4_neg(&t1, &t0); // -(xc.yc) FP4_add(&(w->c), &z2, &t1); // wc = (xb.yb) - (xa.ya) + (xa+xc)(ya+yc) - (xc.yc) = xb.yb + xc.ya + xa.yc FP4_add(&z3, &z3, &t1); // (xb+xc)(yb+yc) -(xb.yb) - (xc.yc) = xb.yc + xc.yb FP4_times_i(&t0); // i.(xc.yc) FP4_add(&(w->b), &(w->b), &t0); // wb = (xa+xb)(ya+yb) -(xa.ya) -(xb.yb) +i(xc.yc) FP4_norm(&z3); FP4_times_i(&z3); // i[(xb+xc)(yb+yc) -(xb.yb) - (xc.yc)] = i(xb.yc + xc.yb) FP4_add(&(w->a), &z0, &z3); // wa = xa.ya + i(xb.yc + xc.yb) FP12_norm(w); w->type = FP_DENSE; } /* FP12 full multiplication w=w*y */ /* Supports sparse multiplicands */ /* Usually w is denser than y */ void YYY::FP12_ssmul(FP12 *w, FP12 *y) { FP4 z0, z1, z2, z3, t0, t1; if (w->type == FP_UNITY) { FP12_copy(w, y); return; } if (y->type == FP_UNITY) return; if (y->type >= FP_SPARSE) { FP4_mul(&z0, &(w->a), &(y->a)); // xa.ya always 11x11 #if SEXTIC_TWIST_ZZZ == M_TYPE if (y->type == FP_SPARSE || w->type == FP_SPARSE) { FP2_mul(&z2.b, &(w->b).b, &(y->b).b); FP2_zero(&z2.a); if (y->type != FP_SPARSE) FP2_mul(&z2.a, &(w->b).b, &(y->b).a); if (w->type != FP_SPARSE) FP2_mul(&z2.a, &(w->b).a, &(y->b).b); FP4_times_i(&z2); } else #endif FP4_mul(&z2, &(w->b), &(y->b)); // xb.yb could be 00x00 or 01x01 or or 10x10 or 11x00 or 11x10 or 11x01 or 11x11 FP4_add(&t0, &(w->a), &(w->b)); // (xa+xb) FP4_add(&t1, &(y->a), &(y->b)); // (ya+yb) FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&z1, &t0, &t1); // (xa+xb)(ya+yb) always 11x11 FP4_add(&t0, &(w->b), &(w->c)); // (xb+xc) FP4_add(&t1, &(y->b), &(y->c)); // (yb+yc) FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&z3, &t0, &t1); // (xb+xc)(yb+yc) could be anything... FP4_neg(&t0, &z0); // -(xa.ya) FP4_neg(&t1, &z2); // -(xb.yb) FP4_add(&z1, &z1, &t0); FP4_add(&(w->b), &z1, &t1); // /wb = (xa+xb)(ya+yb) -(xa.ya) -(xb.yb) = xa.yb + xb.ya FP4_add(&z3, &z3, &t1); // (xb+xc)(yb+yc) -(xb.yb) FP4_add(&z2, &z2, &t0); // (xb.yb) - (xa.ya) FP4_add(&t0, &(w->a), &(w->c)); // (xa+xc) FP4_add(&t1, &(y->a), &(y->c)); // (ya+yc) FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&t0, &t1, &t0); // (xa+xc)(ya+yc) always 11x11 FP4_add(&z2, &z2, &t0); // (xb.yb) - (xa.ya) + (xa+xc)(ya+yc) #if SEXTIC_TWIST_ZZZ == D_TYPE if (y->type == FP_SPARSE || w->type == FP_SPARSE) { FP2_mul(&t0.a, &(w->c).a, &(y->c).a); FP2_zero(&t0.b); if (y->type != FP_SPARSE) FP2_mul(&t0.b, &(w->c).a, &(y->c).b); if (w->type != FP_SPARSE) FP2_mul(&t0.b, &(w->c).b, &(y->c).a); } else #endif FP4_mul(&t0, &(w->c), &(y->c)); // (xc.yc) could be anything FP4_neg(&t1, &t0); // -(xc.yc) FP4_add(&(w->c), &z2, &t1); // wc = (xb.yb) - (xa.ya) + (xa+xc)(ya+yc) - (xc.yc) = xb.yb + xc.ya + xa.yc FP4_add(&z3, &z3, &t1); // (xb+xc)(yb+yc) -(xb.yb) - (xc.yc) = xb.yc + xc.yb FP4_times_i(&t0); // i.(xc.yc) FP4_add(&(w->b), &(w->b), &t0); // wb = (xa+xb)(ya+yb) -(xa.ya) -(xb.yb) +i(xc.yc) FP4_norm(&z3); FP4_times_i(&z3); // i[(xb+xc)(yb+yc) -(xb.yb) - (xc.yc)] = i(xb.yc + xc.yb) FP4_add(&(w->a), &z0, &z3); // wa = xa.ya + i(xb.yc + xc.yb) } else { if (w->type == FP_SPARSER || w->type == FP_SPARSEST) { FP12_smul(w, y); return; } // dense by sparser or sparsest - 13m #if SEXTIC_TWIST_ZZZ == D_TYPE FP4_copy(&z3, &(w->b)); FP4_mul(&z0, &(w->a), &(y->a)); if (y->type == FP_SPARSEST) FP4_qmul(&z2, &(w->b), &(y->b).a.a); else FP4_pmul(&z2, &(w->b), &(y->b).a); FP4_add(&(w->b), &(w->a), &(w->b)); FP4_copy(&t1, &(y->a)); FP2_add(&t1.a, &t1.a, &(y->b).a); FP4_norm(&t1); FP4_norm(&(w->b)); FP4_mul(&(w->b), &(w->b), &t1); FP4_add(&z3, &z3, &(w->c)); FP4_norm(&z3); if (y->type == FP_SPARSEST) FP4_qmul(&z3, &z3, &(y->b).a.a); else FP4_pmul(&z3, &z3, &(y->b).a); FP4_neg(&t0, &z0); FP4_neg(&t1, &z2); FP4_add(&(w->b), &(w->b), &t0); // z1=z1-z0 FP4_add(&(w->b), &(w->b), &t1); // z1=z1-z2 FP4_add(&z3, &z3, &t1); // z3=z3-z2 FP4_add(&z2, &z2, &t0); // z2=z2-z0 FP4_add(&t0, &(w->a), &(w->c)); FP4_norm(&t0); FP4_norm(&z3); FP4_mul(&t0, &(y->a), &t0); FP4_add(&(w->c), &z2, &t0); FP4_times_i(&z3); FP4_add(&(w->a), &z0, &z3); #endif #if SEXTIC_TWIST_ZZZ == M_TYPE FP4_mul(&z0, &(w->a), &(y->a)); FP4_add(&t0, &(w->a), &(w->b)); FP4_norm(&t0); FP4_mul(&z1, &t0, &(y->a)); FP4_add(&t0, &(w->b), &(w->c)); FP4_norm(&t0); if (y->type == FP_SPARSEST) FP4_qmul(&z3, &t0, &(y->c).b.a); else FP4_pmul(&z3, &t0, &(y->c).b); FP4_times_i(&z3); FP4_neg(&t0, &z0); FP4_add(&z1, &z1, &t0); // z1=z1-z0 FP4_copy(&(w->b), &z1); FP4_copy(&z2, &t0); FP4_add(&t0, &(w->a), &(w->c)); FP4_add(&t1, &(y->a), &(y->c)); FP4_norm(&t0); FP4_norm(&t1); FP4_mul(&t0, &t1, &t0); FP4_add(&z2, &z2, &t0); if (y->type == FP_SPARSEST) FP4_qmul(&t0, &(w->c), &(y->c).b.a); else FP4_pmul(&t0, &(w->c), &(y->c).b); FP4_times_i(&t0); FP4_neg(&t1, &t0); FP4_times_i(&t0); FP4_add(&(w->c), &z2, &t1); FP4_add(&z3, &z3, &t1); FP4_add(&(w->b), &(w->b), &t0); FP4_norm(&z3); FP4_times_i(&z3); FP4_add(&(w->a), &z0, &z3); #endif } w->type = FP_DENSE; FP12_norm(w); } /* FP12 multiplication w=w*y */ /* catering for special case that arises from special form of ATE pairing line function */ /* w and y are both sparser or sparsest line functions - cost = 6m */ void YYY::FP12_smul(FP12 *w, FP12 *y) { FP2 w1, w2, w3, ta, tb, tc, td, te, t; #if SEXTIC_TWIST_ZZZ == D_TYPE FP2_mul(&w1, &(w->a).a, &(y->a).a); // A1.A2 FP2_mul(&w2, &(w->a).b, &(y->a).b); // B1.B2 if (y->type == FP_SPARSEST || w->type == FP_SPARSEST) { if (y->type == FP_SPARSEST && w->type == FP_SPARSEST) { FP_mul(&w3.a, &(w->b).a.a, &(y->b).a.a); FP_zero(&w3.b); } else { if (y->type != FP_SPARSEST) FP2_pmul(&w3, &(y->b).a, &(w->b).a.a); if (w->type != FP_SPARSEST) FP2_pmul(&w3, &(w->b).a, &(y->b).a.a); } } else FP2_mul(&w3, &(w->b).a, &(y->b).a); // C1.C2 FP2_add(&ta, &(w->a).a, &(w->a).b); // A1+B1 FP2_add(&tb, &(y->a).a, &(y->a).b); // A2+B2 FP2_norm(&ta); FP2_norm(&tb); FP2_mul(&tc, &ta, &tb); // (A1+B1)(A2+B2) FP2_add(&t, &w1, &w2); FP2_neg(&t, &t); FP2_add(&tc, &tc, &t); // (A1+B1)(A2+B2)-A1.A2-B1*B2 = (A1.B2+A2.B1) FP2_add(&ta, &(w->a).a, &(w->b).a); // A1+C1 FP2_add(&tb, &(y->a).a, &(y->b).a); // A2+C2 FP2_norm(&ta); FP2_norm(&tb); FP2_mul(&td, &ta, &tb); // (A1+C1)(A2+C2) FP2_add(&t, &w1, &w3); FP2_neg(&t, &t); FP2_add(&td, &td, &t); // (A1+C1)(A2+C2)-A1.A2-C1*C2 = (A1.C2+A2.C1) FP2_add(&ta, &(w->a).b, &(w->b).a); // B1+C1 FP2_add(&tb, &(y->a).b, &(y->b).a); // B2+C2 FP2_norm(&ta); FP2_norm(&tb); FP2_mul(&te, &ta, &tb); // (B1+C1)(B2+C2) FP2_add(&t, &w2, &w3); FP2_neg(&t, &t); FP2_add(&te, &te, &t); // (B1+C1)(B2+C2)-B1.B2-C1*C2 = (B1.C2+B2.C1) FP2_mul_ip(&w2); FP2_add(&w1, &w1, &w2); FP4_from_FP2s(&(w->a), &w1, &tc); FP4_from_FP2s(&(w->b), &td, &te); // only norm these 2 FP4_from_FP2(&(w->c), &w3); FP4_norm(&(w->a)); FP4_norm(&(w->b)); #endif // } else { #if SEXTIC_TWIST_ZZZ == M_TYPE FP2_mul(&w1, &(w->a).a, &(y->a).a); // A1.A2 FP2_mul(&w2, &(w->a).b, &(y->a).b); // B1.B2 if (y->type == FP_SPARSEST || w->type == FP_SPARSEST) { if (y->type == FP_SPARSEST && w->type == FP_SPARSEST) { FP_mul(&w3.a, &(w->c).b.a, &(y->c).b.a); FP_zero(&w3.b); } else { if (y->type != FP_SPARSEST) FP2_pmul(&w3, &(y->c).b, &(w->c).b.a); if (w->type != FP_SPARSEST) FP2_pmul(&w3, &(w->c).b, &(y->c).b.a); } } else FP2_mul(&w3, &(w->c).b, &(y->c).b); // F1.F2 FP2_add(&ta, &(w->a).a, &(w->a).b); // A1+B1 FP2_add(&tb, &(y->a).a, &(y->a).b); // A2+B2 FP2_norm(&ta); FP2_norm(&tb); FP2_mul(&tc, &ta, &tb); // (A1+B1)(A2+B2) FP2_add(&t, &w1, &w2); FP2_neg(&t, &t); FP2_add(&tc, &tc, &t); // (A1+B1)(A2+B2)-A1.A2-B1*B2 = (A1.B2+A2.B1) FP2_add(&ta, &(w->a).a, &(w->c).b); // A1+F1 FP2_add(&tb, &(y->a).a, &(y->c).b); // A2+F2 FP2_norm(&ta); FP2_norm(&tb); FP2_mul(&td, &ta, &tb); // (A1+F1)(A2+F2) FP2_add(&t, &w1, &w3); FP2_neg(&t, &t); FP2_add(&td, &td, &t); // (A1+F1)(A2+F2)-A1.A2-F1*F2 = (A1.F2+A2.F1) FP2_add(&ta, &(w->a).b, &(w->c).b); // B1+F1 FP2_add(&tb, &(y->a).b, &(y->c).b); // B2+F2 FP2_norm(&ta); FP2_norm(&tb); FP2_mul(&te, &ta, &tb); // (B1+F1)(B2+F2) FP2_add(&t, &w2, &w3); FP2_neg(&t, &t); FP2_add(&te, &te, &t); // (B1+F1)(B2+F2)-B1.B2-F1*F2 = (B1.F2+B2.F1) FP2_mul_ip(&w2); FP2_add(&w1, &w1, &w2); FP4_from_FP2s(&(w->a), &w1, &tc); FP2_mul_ip(&w3); FP2_norm(&w3); FP4_from_FP2H(&(w->b), &w3); FP2_norm(&te); FP2_mul_ip(&te); FP4_from_FP2s(&(w->c), &te, &td); FP4_norm(&(w->a)); FP4_norm(&(w->c)); #endif // } w->type = FP_SPARSE; } /* Set w=1/x */ /* SU= 600 */ void YYY::FP12_inv(FP12 *w, FP12 *x) { FP4 f0, f1, f2, f3; FP4_sqr(&f0, &(x->a)); FP4_mul(&f1, &(x->b), &(x->c)); FP4_times_i(&f1); FP4_sub(&f0, &f0, &f1); /* y.a */ FP4_norm(&f0); FP4_sqr(&f1, &(x->c)); FP4_times_i(&f1); FP4_mul(&f2, &(x->a), &(x->b)); FP4_sub(&f1, &f1, &f2); /* y.b */ FP4_norm(&f1); FP4_sqr(&f2, &(x->b)); FP4_mul(&f3, &(x->a), &(x->c)); FP4_sub(&f2, &f2, &f3); /* y.c */ FP4_norm(&f2); FP4_mul(&f3, &(x->b), &f2); FP4_times_i(&f3); FP4_mul(&(w->a), &f0, &(x->a)); FP4_add(&f3, &(w->a), &f3); FP4_mul(&(w->c), &f1, &(x->c)); FP4_times_i(&(w->c)); FP4_add(&f3, &(w->c), &f3); FP4_norm(&f3); FP4_inv(&f3, &f3, NULL); FP4_mul(&(w->a), &f0, &f3); FP4_mul(&(w->b), &f1, &f3); FP4_mul(&(w->c), &f2, &f3); w->type = FP_DENSE; } /* constant time powering by small integer of max length bts */ void YYY::FP12_pinpow(FP12 *r, int e, int bts) { int i, b; FP12 R[2]; FP12_one(&R[0]); FP12_copy(&R[1], r); for (i = bts - 1; i >= 0; i--) { b = (e >> i) & 1; FP12_mul(&R[1 - b], &R[b]); FP12_usqr(&R[b], &R[b]); } FP12_copy(r, &R[0]); } /* Compressed powering of unitary elements y=x^(e mod r) */ void YYY::FP12_compow(FP4 *c, FP12 *x, BIG e, BIG r) { FP12 g1, g2; FP4 cp, cpm1, cpm2; FP2 f; BIG q, a, b, m; BIG_rcopy(a, Fra); BIG_rcopy(b, Frb); FP2_from_BIGs(&f, a, b); BIG_rcopy(q, Modulus); FP12_copy(&g1, x); FP12_copy(&g2, x); BIG_copy(m, q); BIG_mod(m, r); BIG_copy(a, e); BIG_mod(a, m); BIG_copy(b, e); BIG_sdiv(b, m); FP12_trace(c, &g1); if (BIG_iszilch(b)) { FP4_xtr_pow(c, c, e); return; } FP12_frob(&g2, &f); FP12_trace(&cp, &g2); FP12_conj(&g1, &g1); FP12_mul(&g2, &g1); FP12_trace(&cpm1, &g2); FP12_mul(&g2, &g1); FP12_trace(&cpm2, &g2); FP4_xtr_pow2(c, &cp, c, &cpm1, &cpm2, a, b); } /* Note this is simple square and multiply, so not side-channel safe */ /* But fast for final exponentiation where exponent is not a secret */ void YYY::FP12_pow(FP12 *r, FP12 *a, BIG b) { FP12 w, sf; BIG b1, b3; int i, nb, bt; BIG_copy(b1, b); BIG_norm(b1); BIG_pmul(b3, b1, 3); BIG_norm(b3); FP12_copy(&sf, a); FP12_norm(&sf); FP12_copy(&w, &sf); if (BIG_iszilch(b3)) { FP12_one(r); return; } nb = BIG_nbits(b3); for (i = nb - 2; i >= 1; i--) { FP12_usqr(&w, &w); bt = BIG_bit(b3, i) - BIG_bit(b1, i); if (bt == 1) FP12_mul(&w, &sf); if (bt == -1) { FP12_conj(&sf, &sf); FP12_mul(&w, &sf); FP12_conj(&sf, &sf); } } FP12_copy(r, &w); FP12_reduce(r); } /* p=q0^u0.q1^u1.q2^u2.q3^u3 */ /* Side channel attack secure */ // Bos & Costello https://eprint.iacr.org/2013/458.pdf // Faz-Hernandez & Longa & Sanchez https://eprint.iacr.org/2013/158.pdf void YYY::FP12_pow4(FP12 *p, FP12 *q, BIG u[4]) { int i, j, k, nb, pb, bt; FP12 g[8], r; BIG t[4], mt; sign8 w[NLEN_XXX * BASEBITS_XXX + 1]; sign8 s[NLEN_XXX * BASEBITS_XXX + 1]; for (i = 0; i < 4; i++) BIG_copy(t[i], u[i]); // Precomputed table FP12_copy(&g[0], &q[0]); // q[0] FP12_copy(&g[1], &g[0]); FP12_mul(&g[1], &q[1]); // q[0].q[1] FP12_copy(&g[2], &g[0]); FP12_mul(&g[2], &q[2]); // q[0].q[2] FP12_copy(&g[3], &g[1]); FP12_mul(&g[3], &q[2]); // q[0].q[1].q[2] FP12_copy(&g[4], &g[0]); FP12_mul(&g[4], &q[3]); // q[0].q[3] FP12_copy(&g[5], &g[1]); FP12_mul(&g[5], &q[3]); // q[0].q[1].q[3] FP12_copy(&g[6], &g[2]); FP12_mul(&g[6], &q[3]); // q[0].q[2].q[3] FP12_copy(&g[7], &g[3]); FP12_mul(&g[7], &q[3]); // q[0].q[1].q[2].q[3] // Make it odd pb = 1 - BIG_parity(t[0]); BIG_inc(t[0], pb); BIG_norm(t[0]); // Number of bits BIG_zero(mt); for (i = 0; i < 4; i++) { BIG_or(mt, mt, t[i]); } nb = 1 + BIG_nbits(mt); // Sign pivot s[nb - 1] = 1; for (i = 0; i < nb - 1; i++) { BIG_fshr(t[0], 1); s[i] = 2 * BIG_parity(t[0]) - 1; } // Recoded exponent for (i = 0; i < nb; i++) { w[i] = 0; k = 1; for (j = 1; j < 4; j++) { bt = s[i] * BIG_parity(t[j]); BIG_fshr(t[j], 1); BIG_dec(t[j], (bt >> 1)); BIG_norm(t[j]); w[i] += bt * k; k *= 2; } } // Main loop FP12_select(p, g, 2 * w[nb - 1] + 1); for (i = nb - 2; i >= 0; i--) { FP12_select(&r, g, 2 * w[i] + s[i]); FP12_usqr(p, p); FP12_mul(p, &r); } // apply correction FP12_conj(&r, &q[0]); FP12_mul(&r, p); FP12_cmove(p, &r, pb); FP12_reduce(p); } /* Set w=w^p using Frobenius */ /* SU= 160 */ void YYY::FP12_frob(FP12 *w, FP2 *f) { FP2 f2, f3; FP2_sqr(&f2, f); /* f2=f^2 */ FP2_mul(&f3, &f2, f); /* f3=f^3 */ FP4_frob(&(w->a), &f3); FP4_frob(&(w->b), &f3); FP4_frob(&(w->c), &f3); FP4_pmul(&(w->b), &(w->b), f); FP4_pmul(&(w->c), &(w->c), &f2); w->type = FP_DENSE; } /* SU= 8 */ /* normalise all components of w */ void YYY::FP12_norm(FP12 *w) { FP4_norm(&(w->a)); FP4_norm(&(w->b)); FP4_norm(&(w->c)); } /* SU= 8 */ /* reduce all components of w */ void YYY::FP12_reduce(FP12 *w) { FP4_reduce(&(w->a)); FP4_reduce(&(w->b)); FP4_reduce(&(w->c)); } /* trace function w=trace(x) */ /* SU= 8 */ void YYY::FP12_trace(FP4 *w, FP12 *x) { FP4_imul(w, &(x->a), 3); FP4_reduce(w); } /* SU= 8 */ /* Output w in hex */ void YYY::FP12_output(FP12 *w) { printf("["); FP4_output(&(w->a)); printf(","); FP4_output(&(w->b)); printf(","); FP4_output(&(w->c)); printf("]"); } /* SU= 64 */ /* Convert g to octet string w */ void YYY::FP12_toOctet(octet *W, FP12 *g) { W->len = 12 * MODBYTES_XXX; FP4_toBytes(&(W->val[0]),&(g->c)); FP4_toBytes(&(W->val[4 * MODBYTES_XXX]),&(g->b)); FP4_toBytes(&(W->val[8 * MODBYTES_XXX]),&(g->a)); } /* SU= 24 */ /* Restore g from octet string w */ void YYY::FP12_fromOctet(FP12 *g, octet *W) { FP4_fromBytes(&(g->c),&(W->val[0])); FP4_fromBytes(&(g->b),&(W->val[4 * MODBYTES_XXX])); FP4_fromBytes(&(g->a),&(W->val[8 * MODBYTES_XXX])); } /* Move g to f if d=1 */ void YYY::FP12_cmove(FP12 *f, FP12 *g, int d) { FP4_cmove(&(f->a), &(g->a), d); FP4_cmove(&(f->b), &(g->b), d); FP4_cmove(&(f->c), &(g->c), d); d = ~(d - 1); f->type ^= (f->type ^ g->type)&d; }