/* * Copyright (c) 2012-2020 MIRACL UK Ltd. * * This file is part of MIRACL Core * (see https://github.com/miracl/core). * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* CORE Weierstrass elliptic curve functions over FP2 */ //#include #include "ecp4_ZZZ.h" using namespace std; using namespace XXX; using namespace YYY; int ZZZ::ECP4_isinf(ECP4 *P) { return (FP4_iszilch(&(P->x)) & FP4_iszilch(&(P->z))); } /* Set P=Q */ void ZZZ::ECP4_copy(ECP4 *P, ECP4 *Q) { FP4_copy(&(P->x), &(Q->x)); FP4_copy(&(P->y), &(Q->y)); FP4_copy(&(P->z), &(Q->z)); } /* set P to Infinity */ void ZZZ::ECP4_inf(ECP4 *P) { FP4_zero(&(P->x)); FP4_one(&(P->y)); FP4_zero(&(P->z)); } /* Conditional move Q to P dependant on d */ static void ECP4_cmove(ZZZ::ECP4 *P, ZZZ::ECP4 *Q, int d) { FP4_cmove(&(P->x), &(Q->x), d); FP4_cmove(&(P->y), &(Q->y), d); FP4_cmove(&(P->z), &(Q->z), d); } /* return 1 if b==c, no branching */ static int teq(sign32 b, sign32 c) { sign32 x = b ^ c; x -= 1; // if x=0, x now -1 return (int)((x >> 31) & 1); } /* Constant time select from pre-computed table */ static void ECP4_select(ZZZ::ECP4 *P, ZZZ::ECP4 W[], sign32 b) { ZZZ::ECP4 MP; sign32 m = b >> 31; sign32 babs = (b ^ m) - m; babs = (babs - 1) / 2; ECP4_cmove(P, &W[0], teq(babs, 0)); // conditional move ECP4_cmove(P, &W[1], teq(babs, 1)); ECP4_cmove(P, &W[2], teq(babs, 2)); ECP4_cmove(P, &W[3], teq(babs, 3)); ECP4_cmove(P, &W[4], teq(babs, 4)); ECP4_cmove(P, &W[5], teq(babs, 5)); ECP4_cmove(P, &W[6], teq(babs, 6)); ECP4_cmove(P, &W[7], teq(babs, 7)); ECP4_copy(&MP, P); ECP4_neg(&MP); // minus P ECP4_cmove(P, &MP, (int)(m & 1)); } /* Make P affine (so z=1) */ void ZZZ::ECP4_affine(ECP4 *P) { FP4 one, iz; if (ECP4_isinf(P)) return; FP4_one(&one); if (FP4_isunity(&(P->z))) { FP4_reduce(&(P->x)); FP4_reduce(&(P->y)); return; } FP4_inv(&iz, &(P->z),NULL); FP4_mul(&(P->x), &(P->x), &iz); FP4_mul(&(P->y), &(P->y), &iz); FP4_reduce(&(P->x)); FP4_reduce(&(P->y)); FP4_copy(&(P->z), &one); } /* return 1 if P==Q, else 0 */ /* SU= 312 */ int ZZZ::ECP4_equals(ECP4 *P, ECP4 *Q) { FP4 a, b; FP4_mul(&a, &(P->x), &(Q->z)); FP4_mul(&b, &(Q->x), &(P->z)); if (!FP4_equals(&a, &b)) return 0; FP4_mul(&a, &(P->y), &(Q->z)); FP4_mul(&b, &(Q->y), &(P->z)); if (!FP4_equals(&a, &b)) return 0; return 1; } /* extract x, y from point P */ int ZZZ::ECP4_get(FP4 *x, FP4 *y, ECP4 *P) { ECP4 W; ECP4_copy(&W, P); ECP4_affine(&W); if (ECP4_isinf(&W)) return -1; FP4_copy(y, &(W.y)); FP4_copy(x, &(W.x)); return 0; } /* Output point P */ void ZZZ::ECP4_output(ECP4 *P) { FP4 x, y; if (ECP4_isinf(P)) { printf("Infinity\n"); return; } ECP4_get(&x, &y, P); printf("("); FP4_output(&x); printf(","); FP4_output(&y); printf(")\n"); } /* Convert Q to octet string */ void ZZZ::ECP4_toOctet(octet *W, ECP4 *Q,bool compress) { FP4 qx, qy; bool alt=false; ECP4_get(&qx, &qy, Q); #if (MBITS-1)%8 <= 4 #ifdef ALLOW_ALT_COMPRESS_ZZZ alt=true; #endif #endif if (alt) { FP4_toBytes(&(W->val[0]),&qx); if (!compress) { W->len=8*MODBYTES_XXX; FP4_toBytes(&(W->val[4*MODBYTES_XXX]), &qy); } else { W->val[0]|=0x80; if (FP4_islarger(&qy)==1) W->val[0]|=0x20; W->len=4*MODBYTES_XXX; } } else { FP4_toBytes(&(W->val[1]),&qx); if (!compress) { W->val[0] = 0x04; FP4_toBytes(&(W->val[4 * MODBYTES_XXX+1]), &qy); W->len = 8 * MODBYTES_XXX+1; } else { W->val[0]=0x02; if (FP4_sign(&qy)==1) W->val[0] = 0x03; W->len = 4 * MODBYTES_XXX+1; } } } /* restore Q from octet string */ int ZZZ::ECP4_fromOctet(ECP4 *Q, octet *W) { FP4 qx, qy; bool alt=false; int sgn,cmp,typ = W->val[0]; #if (MBITS-1)%8 <= 4 #ifdef ALLOW_ALT_COMPRESS_ZZZ alt=true; #endif #endif if (alt) { W->val[0]&=0x1f; FP4_fromBytes(&qx,&(W->val[0])); W->val[0]=typ; if ((typ&0x80)==0) { FP4_fromBytes(&qy,&(W->val[4*MODBYTES_XXX])); if (ECP4_set(Q, &qx, &qy)) return 1; return 0; } else { if (!ECP4_setx(Q,&qx,0)) return 0; sgn=(typ&0x20)>>5; cmp=FP4_islarger(&(Q->y)); if ((sgn==1 && cmp!=1) || (sgn==0 && cmp==1)) ECP4_neg(Q); return 1; } } else { FP4_fromBytes(&qx,&(W->val[1])); if (typ == 0x04) { FP4_fromBytes(&qy,&(W->val[4 * MODBYTES_XXX+1])); if (ECP4_set(Q, &qx, &qy)) return 1; } else { if (ECP4_setx(Q, &qx, typ&1)) return 1; } } return 0; } /* Calculate RHS of twisted curve equation x^3+B/i or x^3+Bi*/ void ZZZ::ECP4_rhs(FP4 *rhs, FP4 *x) { /* calculate RHS of elliptic curve equation */ FP4 t; FP2 t2; BIG b; FP4_sqr(&t, x); FP4_mul(rhs, &t, x); /* Assuming CURVE_A=0 */ BIG_rcopy(b, CURVE_B); FP2_from_BIG(&t2, b); FP4_from_FP2(&t, &t2); #if SEXTIC_TWIST_ZZZ == D_TYPE FP4_div_i(&t); /* IMPORTANT - here we use the correct SEXTIC twist of the curve */ #endif #if SEXTIC_TWIST_ZZZ == M_TYPE FP4_times_i(&t); /* IMPORTANT - here we use the correct SEXTIC twist of the curve */ #endif FP4_add(rhs, &t, rhs); FP4_reduce(rhs); } /* Set P=(x,y). Return 1 if (x,y) is on the curve, else return 0*/ /* SU= 232 */ int ZZZ::ECP4_set(ECP4 *P, FP4 *x, FP4 *y) { FP4 rhs, y2; FP4_sqr(&y2, y); ECP4_rhs(&rhs, x); if (!FP4_equals(&y2, &rhs)) { ECP4_inf(P); return 0; } FP4_copy(&(P->x), x); FP4_copy(&(P->y), y); FP4_one(&(P->z)); return 1; } /* Set P=(x,y). Return 1 if (x,.) is on the curve, else return 0 */ /* SU= 232 */ int ZZZ::ECP4_setx(ECP4 *P, FP4 *x, int s) { FP4 y; FP hint; ECP4_rhs(&y, x); if (!FP4_qr(&y,&hint)) { ECP4_inf(P); return 0; } FP4_sqrt(&y, &y, &hint); FP4_copy(&(P->x), x); FP4_copy(&(P->y), &y); FP4_one(&(P->z)); if (FP4_sign(&(P->y)) != s) FP4_neg(&(P->y),&(P->y)); FP4_reduce(&(P->y)); return 1; } /* Set P=-P */ /* SU= 8 */ void ZZZ::ECP4_neg(ECP4 *P) { FP4_norm(&(P->y)); FP4_neg(&(P->y), &(P->y)); FP4_norm(&(P->y)); } /* R+=R */ /* return -1 for Infinity, 0 for addition, 1 for doubling */ int ZZZ::ECP4_dbl(ECP4 *P) { FP4 t0, t1, t2, t3, iy, x3, y3; FP4_copy(&iy, &(P->y)); //FP4 iy=new FP4(y); #if SEXTIC_TWIST_ZZZ==D_TYPE FP4_times_i(&iy); //iy.mul_ip(); #endif FP4_sqr(&t0, &(P->y)); //t0.sqr(); #if SEXTIC_TWIST_ZZZ==D_TYPE FP4_times_i(&t0); //t0.mul_ip(); #endif FP4_mul(&t1, &iy, &(P->z)); //t1.mul(z); FP4_sqr(&t2, &(P->z)); //t2.sqr(); FP4_add(&(P->z), &t0, &t0); //z.add(t0); FP4_norm(&(P->z)); //z.norm(); FP4_add(&(P->z), &(P->z), &(P->z)); //z.add(z); FP4_add(&(P->z), &(P->z), &(P->z)); //z.add(z); FP4_norm(&(P->z)); //z.norm(); FP4_imul(&t2, &t2, 3 * CURVE_B_I); //t2.imul(3*ROM.CURVE_B_I); #if SEXTIC_TWIST_ZZZ==M_TYPE FP4_times_i(&t2); #endif FP4_mul(&x3, &t2, &(P->z)); //x3.mul(z); FP4_add(&y3, &t0, &t2); //y3.add(t2); FP4_norm(&y3); //y3.norm(); FP4_mul(&(P->z), &(P->z), &t1); //z.mul(t1); FP4_add(&t1, &t2, &t2); //t1.add(t2); FP4_add(&t2, &t2, &t1); //t2.add(t1); FP4_norm(&t2); //t2.norm(); FP4_sub(&t0, &t0, &t2); //t0.sub(t2); FP4_norm(&t0); //t0.norm(); //y^2-9bz^2 FP4_mul(&y3, &y3, &t0); //y3.mul(t0); FP4_add(&(P->y), &y3, &x3); //y3.add(x3); //(y^2+3z*2)(y^2-9z^2)+3b.z^2.8y^2 FP4_mul(&t1, &(P->x), &iy); //t1.mul(iy); // FP4_norm(&t0); //x.norm(); FP4_mul(&(P->x), &t0, &t1); //x.mul(t1); FP4_add(&(P->x), &(P->x), &(P->x)); //x.add(x); //(y^2-9bz^2)xy2 FP4_norm(&(P->x)); //x.norm(); FP4_norm(&(P->y)); //y.norm(); return 1; } /* Set P+=Q */ int ZZZ::ECP4_add(ECP4 *P, ECP4 *Q) { FP4 t0, t1, t2, t3, t4, x3, y3, z3; int b3 = 3 * CURVE_B_I; FP4_mul(&t0, &(P->x), &(Q->x)); //t0.mul(Q.x); // x.Q.x FP4_mul(&t1, &(P->y), &(Q->y)); //t1.mul(Q.y); // y.Q.y FP4_mul(&t2, &(P->z), &(Q->z)); //t2.mul(Q.z); FP4_add(&t3, &(P->x), &(P->y)); //t3.add(y); FP4_norm(&t3); //t3.norm(); //t3=X1+Y1 FP4_add(&t4, &(Q->x), &(Q->y)); //t4.add(Q.y); FP4_norm(&t4); //t4.norm(); //t4=X2+Y2 FP4_mul(&t3, &t3, &t4); //t3.mul(t4); //t3=(X1+Y1)(X2+Y2) FP4_add(&t4, &t0, &t1); //t4.add(t1); //t4=X1.X2+Y1.Y2 FP4_sub(&t3, &t3, &t4); //t3.sub(t4); FP4_norm(&t3); //t3.norm(); #if SEXTIC_TWIST_ZZZ==D_TYPE FP4_times_i(&t3); //t3.mul_ip(); #endif FP4_add(&t4, &(P->y), &(P->z)); //t4.add(z); FP4_norm(&t4); //t4.norm(); //t4=Y1+Z1 FP4_add(&x3, &(Q->y), &(Q->z)); //x3.add(Q.z); FP4_norm(&x3); //x3.norm(); //x3=Y2+Z2 FP4_mul(&t4, &t4, &x3); //t4.mul(x3); //t4=(Y1+Z1)(Y2+Z2) FP4_add(&x3, &t1, &t2); //x3.add(t2); //X3=Y1.Y2+Z1.Z2 FP4_sub(&t4, &t4, &x3); //t4.sub(x3); FP4_norm(&t4); //t4.norm(); #if SEXTIC_TWIST_ZZZ==D_TYPE FP4_times_i(&t4); //t4.mul_ip(); #endif FP4_add(&x3, &(P->x), &(P->z)); //x3.add(z); FP4_norm(&x3); //x3.norm(); // x3=X1+Z1 FP4_add(&y3, &(Q->x), &(Q->z)); //y3.add(Q.z); FP4_norm(&y3); //y3.norm(); // y3=X2+Z2 FP4_mul(&x3, &x3, &y3); //x3.mul(y3); // x3=(X1+Z1)(X2+Z2) FP4_add(&y3, &t0, &t2); //y3.add(t2); // y3=X1.X2+Z1+Z2 FP4_sub(&y3, &x3, &y3); //y3.rsub(x3); FP4_norm(&y3); //y3.norm(); // y3=(X1+Z1)(X2+Z2) - (X1.X2+Z1.Z2) = X1.Z2+X2.Z1 #if SEXTIC_TWIST_ZZZ==D_TYPE FP4_times_i(&t0); //t0.mul_ip(); FP4_times_i(&t1); //t1.mul_ip(); #endif FP4_add(&x3, &t0, &t0); //x3.add(t0); FP4_add(&t0, &t0, &x3); //t0.add(x3); FP4_norm(&t0); //t0.norm(); FP4_imul(&t2, &t2, b3); //t2.imul(b); #if SEXTIC_TWIST_ZZZ==M_TYPE FP4_times_i(&t2); #endif FP4_add(&z3, &t1, &t2); //z3.add(t2); FP4_norm(&z3); //z3.norm(); FP4_sub(&t1, &t1, &t2); //t1.sub(t2); FP4_norm(&t1); //t1.norm(); FP4_imul(&y3, &y3, b3); //y3.imul(b); #if SEXTIC_TWIST_ZZZ==M_TYPE FP4_times_i(&y3); #endif FP4_mul(&x3, &y3, &t4); //x3.mul(t4); FP4_mul(&t2, &t3, &t1); //t2.mul(t1); FP4_sub(&(P->x), &t2, &x3); //x3.rsub(t2); FP4_mul(&y3, &y3, &t0); //y3.mul(t0); FP4_mul(&t1, &t1, &z3); //t1.mul(z3); FP4_add(&(P->y), &y3, &t1); //y3.add(t1); FP4_mul(&t0, &t0, &t3); //t0.mul(t3); FP4_mul(&z3, &z3, &t4); //z3.mul(t4); FP4_add(&(P->z), &z3, &t0); //z3.add(t0); FP4_norm(&(P->x)); //x.norm(); FP4_norm(&(P->y)); //y.norm(); FP4_norm(&(P->z)); //z.norm(); return 0; } /* Set P-=Q */ /* SU= 16 */ void ZZZ::ECP4_sub(ECP4 *P, ECP4 *Q) { ECP4 NQ; ECP4_copy(&NQ, Q); ECP4_neg(&NQ); ECP4_add(P, &NQ); } void ZZZ::ECP4_reduce(ECP4 *P) { FP4_reduce(&(P->x)); FP4_reduce(&(P->y)); FP4_reduce(&(P->z)); } /* P*=e */ /* SU= 280 */ void ZZZ::ECP4_mul(ECP4 *P, BIG e) { /* fixed size windows */ int i, nb, s, ns; BIG mt, t; ECP4 Q, W[8], C; sign8 w[1 + (NLEN_XXX * BASEBITS_XXX + 3) / 4]; if (ECP4_isinf(P)) return; /* precompute table */ ECP4_copy(&Q, P); ECP4_dbl(&Q); ECP4_copy(&W[0], P); for (i = 1; i < 8; i++) { ECP4_copy(&W[i], &W[i - 1]); ECP4_add(&W[i], &Q); } /* make exponent odd - add 2P if even, P if odd */ BIG_copy(t, e); s = BIG_parity(t); BIG_inc(t, 1); BIG_norm(t); ns = BIG_parity(t); BIG_copy(mt, t); BIG_inc(mt, 1); BIG_norm(mt); BIG_cmove(t, mt, s); ECP4_cmove(&Q, P, ns); ECP4_copy(&C, &Q); nb = 1 + (BIG_nbits(t) + 3) / 4; /* convert exponent to signed 4-bit window */ for (i = 0; i < nb; i++) { w[i] = BIG_lastbits(t, 5) - 16; BIG_dec(t, w[i]); BIG_norm(t); BIG_fshr(t, 4); } w[nb] = BIG_lastbits(t, 5); //ECP4_copy(P, &W[(w[nb] - 1) / 2]); ECP4_select(P, W, w[nb]); for (i = nb - 1; i >= 0; i--) { ECP4_select(&Q, W, w[i]); ECP4_dbl(P); ECP4_dbl(P); ECP4_dbl(P); ECP4_dbl(P); ECP4_add(P, &Q); } ECP4_sub(P, &C); /* apply correction */ ECP4_affine(P); } // calculate frobenius constants void ZZZ::ECP4_frob_constants(FP2 F[3]) { FP fx, fy; FP2 X; FP_rcopy(&fx, Fra); FP_rcopy(&fy, Frb); FP2_from_FPs(&X, &fx, &fy); FP2_sqr(&F[0], &X); // FF=F^2=(1+i)^(p-7)/6 FP2_copy(&F[2], &F[0]); FP2_mul_ip(&F[2]); // W=(1+i)^6/6.(1+i)^(p-7)/6 = (1+i)^(p-1)/6 FP2_norm(&F[2]); FP2_sqr(&F[1], &F[2]); FP2_mul(&F[2], &F[2], &F[1]); // W=(1+i)^(p-1)/2 FP2_copy(&F[1], &X); #if SEXTIC_TWIST_ZZZ == M_TYPE FP2_mul_ip(&F[1]); // (1+i)^12/12.(1+i)^(p-7)/12 = (1+i)^(p+5)/12 FP2_inv(&F[1], &F[1], NULL); // (1+i)^-(p+5)/12 FP2_sqr(&F[0], &F[1]); // (1+i)^-(p+5)/6 #endif FP2_mul_ip(&F[0]); // FF=(1+i)^(p-7)/6.(1+i) = (1+i)^(p-1)/6 // (1+i)^6/6.(1+i)^-(p+5)/6 = (1+i)^-(p-1)/6 FP2_norm(&F[0]); FP2_mul(&F[1], &F[1], &F[0]); // FFF = (1+i)^(p-7)/12 . (1+i)^(p-1)/6 = (1+i)^(p-3)/4 // (1+i)^-(p+5)/12 . (1+i)^-(p-1)/6 = (1+i)^-(p+1)/4 } /* Calculates q^n.P using Frobenius constants */ void ZZZ::ECP4_frob(ECP4 *P, FP2 F[3], int n) { int i; FP4 X, Y, Z; FP4_copy(&X, &(P->x)); FP4_copy(&Y, &(P->y)); FP4_copy(&Z, &(P->z)); for (i = 0; i < n; i++) { FP4_frob(&X, &F[2]); // X^p FP4_pmul(&X, &X, &F[0]); // X^p.(1+i)^(p-1)/6 // X^p.(1+i)^-(p-1)/6 FP4_frob(&Y, &F[2]); // Y^p FP4_pmul(&Y, &Y, &F[1]); FP4_times_i(&Y); // Y.p.(1+i)^(p-3)/4.(1+i)^(2/4) = Y^p.(1+i)^(p-1)/4 // (1+i)^-(p+1)/4 .(1+i)^2/4 = Y^p.(1+i)^-(p-1)/4 FP4_frob(&Z, &F[2]); } FP4_copy(&(P->x), &X); FP4_copy(&(P->y), &Y); FP4_copy(&(P->z), &Z); //ECP4_set(P,&X,&Y); } /* Side channel attack secure */ // Bos & Costello https://eprint.iacr.org/2013/458.pdf // Faz-Hernandez & Longa & Sanchez https://eprint.iacr.org/2013/158.pdf void ZZZ::ECP4_mul8(ECP4 *P, ECP4 Q[8], BIG u[8]) { int i, j, k, nb, pb1, pb2, bt; ECP4 T1[8], T2[8], W; BIG mt, t[8]; sign8 w1[NLEN_XXX * BASEBITS_XXX + 1]; sign8 s1[NLEN_XXX * BASEBITS_XXX + 1]; sign8 w2[NLEN_XXX * BASEBITS_XXX + 1]; sign8 s2[NLEN_XXX * BASEBITS_XXX + 1]; // FP2 X[3]; /* ECP4_frob_constants(X); */ for (i = 0; i < 8; i++) { BIG_copy(t[i], u[i]); } // Precomputed tables ECP4_copy(&T1[0], &Q[0]); // Q[0] ECP4_copy(&T1[1], &T1[0]); ECP4_add(&T1[1], &Q[1]); // Q[0]+Q[1] ECP4_copy(&T1[2], &T1[0]); ECP4_add(&T1[2], &Q[2]); // Q[0]+Q[2] ECP4_copy(&T1[3], &T1[1]); ECP4_add(&T1[3], &Q[2]); // Q[0]+Q[1]+Q[2] ECP4_copy(&T1[4], &T1[0]); ECP4_add(&T1[4], &Q[3]); // Q[0]+Q[3] ECP4_copy(&T1[5], &T1[1]); ECP4_add(&T1[5], &Q[3]); // Q[0]+Q[1]+Q[3] ECP4_copy(&T1[6], &T1[2]); ECP4_add(&T1[6], &Q[3]); // Q[0]+Q[2]+Q[3] ECP4_copy(&T1[7], &T1[3]); ECP4_add(&T1[7], &Q[3]); // Q[0]+Q[1]+Q[2]+Q[3] ECP4_copy(&T2[0], &Q[4]); // Q[0] ECP4_copy(&T2[1], &T2[0]); ECP4_add(&T2[1], &Q[5]); // Q[0]+Q[1] ECP4_copy(&T2[2], &T2[0]); ECP4_add(&T2[2], &Q[6]); // Q[0]+Q[2] ECP4_copy(&T2[3], &T2[1]); ECP4_add(&T2[3], &Q[6]); // Q[0]+Q[1]+Q[2] ECP4_copy(&T2[4], &T2[0]); ECP4_add(&T2[4], &Q[7]); // Q[0]+Q[3] ECP4_copy(&T2[5], &T2[1]); ECP4_add(&T2[5], &Q[7]); // Q[0]+Q[1]+Q[3] ECP4_copy(&T2[6], &T2[2]); ECP4_add(&T2[6], &Q[7]); // Q[0]+Q[2]+Q[3] ECP4_copy(&T2[7], &T2[3]); ECP4_add(&T2[7], &Q[7]); // Q[0]+Q[1]+Q[2]+Q[3] // Use Frobenius /* for (i=0;i<8;i++) { ECP4_copy(&T2[i],&T1[i]); ECP4_frob(&T2[i],X,4); } */ // Make them odd pb1 = 1 - BIG_parity(t[0]); BIG_inc(t[0], pb1); BIG_norm(t[0]); pb2 = 1 - BIG_parity(t[4]); BIG_inc(t[4], pb2); BIG_norm(t[4]); // Number of bits BIG_zero(mt); for (i = 0; i < 8; i++) { BIG_or(mt, mt, t[i]); } nb = 1 + BIG_nbits(mt); // Sign pivot s1[nb - 1] = 1; s2[nb - 1] = 1; for (i = 0; i < nb - 1; i++) { BIG_fshr(t[0], 1); s1[i] = 2 * BIG_parity(t[0]) - 1; BIG_fshr(t[4], 1); s2[i] = 2 * BIG_parity(t[4]) - 1; } // Recoded exponents for (i = 0; i < nb; i++) { w1[i] = 0; k = 1; for (j = 1; j < 4; j++) { bt = s1[i] * BIG_parity(t[j]); BIG_fshr(t[j], 1); BIG_dec(t[j], (bt >> 1)); BIG_norm(t[j]); w1[i] += bt * k; k *= 2; } w2[i] = 0; k = 1; for (j = 5; j < 8; j++) { bt = s2[i] * BIG_parity(t[j]); BIG_fshr(t[j], 1); BIG_dec(t[j], (bt >> 1)); BIG_norm(t[j]); w2[i] += bt * k; k *= 2; } } // Main loop ECP4_select(P, T1, 2 * w1[nb - 1] + 1); ECP4_select(&W, T2, 2 * w2[nb - 1] + 1); ECP4_add(P, &W); for (i = nb - 2; i >= 0; i--) { ECP4_dbl(P); ECP4_select(&W, T1, 2 * w1[i] + s1[i]); ECP4_add(P, &W); ECP4_select(&W, T2, 2 * w2[i] + s2[i]); ECP4_add(P, &W); } // apply corrections ECP4_copy(&W, P); ECP4_sub(&W, &Q[0]); ECP4_cmove(P, &W, pb1); ECP4_copy(&W, P); ECP4_sub(&W, &Q[4]); ECP4_cmove(P, &W, pb2); ECP4_affine(P); } /* Hunt and Peck a BIG to G2 curve point */ /* void ZZZ::ECP4_hap2point(ECP4 *Q,BIG h) { BIG one,hv; FP2 X2; FP4 X4; BIG_one(one); BIG_copy(hv,h); for (;;) { FP2_from_BIGs(&X2,one,hv); FP4_from_FP2(&X4,&X2); if (ECP4_setx(Q,&X4,0)) break; BIG_inc(hv,1); BIG_norm(hv); } } */ /* Constant time Map BIG to Point in G2 */ void ZZZ::ECP4_map2point(ECP4 *Q,FP4 *H) { int sgn,ne; FP4 X1,X2,X3,W,Y,T,A,NY; FP Z,s; FP4_one(&NY); FP4_copy(&T,H); sgn=FP4_sign(&T); FP_from_int(&Z,RIADZG2A_YYY); FP4_from_FP(&A,&Z); ECP4_rhs(&A,&A); // A=g(Z) FP4_sqrt(&W,&A,NULL); FP_rcopy(&s,SQRTm3); FP_mul(&Z,&Z,&s); FP4_sqr(&T,&T); FP4_mul(&Y,&A,&T); // tv1=u^2*g(Z) FP4_add(&T,&NY,&Y); FP4_norm(&T); // tv2=1+tv1 FP4_sub(&Y,&NY,&Y); FP4_norm(&Y); // tv1=1-tv1 FP4_mul(&NY,&T,&Y); FP4_qmul(&NY,&NY,&Z); FP4_inv(&NY,&NY,NULL); // tv3=inv0(tv1*tv2*Z*sqrt(-3)) FP4_qmul(&W,&W,&Z); // tv4=Z*sqrt(-3).sqrt(g(Z)) if (FP4_sign(&W)==1) { FP4_neg(&W,&W); FP4_norm(&W); } FP4_qmul(&W,&W,&Z); FP4_mul(&W,&W,H); FP4_mul(&W,&W,&Y); FP4_mul(&W,&W,&NY); // tv5=u*tv1*tv3*tv4*Z*sqrt(-3) FP_from_int(&s,RIADZG2A_YYY); FP4_from_FP(&X1,&s); FP4_copy(&X3,&X1); FP4_neg(&X1,&X1); FP4_norm(&X1); FP4_div2(&X1,&X1); // -Z/2 FP4_copy(&X2,&X1); FP4_sub(&X1,&X1,&W); FP4_norm(&X1); FP4_add(&X2,&X2,&W); FP4_norm(&X2); FP4_add(&A,&A,&A); FP4_add(&A,&A,&A); FP4_norm(&A); // 4*g(Z) FP4_sqr(&T,&T); FP4_mul(&T,&T,&NY); FP4_sqr(&T,&T); // (tv2^2*tv3)^2 FP4_mul(&A,&A,&T); // -4*g(Z)*(tv2^2*tv3)^2 FP4_add(&X3,&X3,&A); FP4_norm(&X3); ECP4_rhs(&W,&X2); FP4_cmove(&X3,&X2,FP4_qr(&W,NULL)); ECP4_rhs(&W,&X1); FP4_cmove(&X3,&X1,FP4_qr(&W,NULL)); ECP4_rhs(&W,&X3); FP4_sqrt(&Y,&W,NULL); ne=FP4_sign(&Y)^sgn; FP4_neg(&W,&Y); FP4_norm(&W); FP4_cmove(&Y,&W,ne); ECP4_set(Q,&X3,&Y); } /* Map octet to point on G2 */ /* void ZZZ::ECP4_mapit(ECP4 *Q, octet *W) { BIG q, x; DBIG dx; BIG_rcopy(q, Modulus); BIG_dfromBytesLen(dx,W->val,W->len); BIG_dmod(x,dx,q); ECP4_hap2point(Q,x); ECP4_cfp(Q); } */ /* cofactor product */ void ZZZ::ECP4_cfp(ECP4 *Q) { FP2 X[3]; ECP4 xQ, x2Q, x3Q, x4Q; BIG x; ECP4_frob_constants(X); BIG_rcopy(x, CURVE_Bnx); // Efficient hash maps to G2 on BLS24 curves - Budroni, Pintore // Q -> x4Q -x3Q -Q + F(x3Q-x2Q) + F(F(x2Q-xQ)) + F(F(F(xQ-Q))) +F(F(F(F(2Q)))) ECP4_copy(&xQ, Q); ECP4_mul(&xQ, x); ECP4_copy(&x2Q, &xQ); ECP4_mul(&x2Q, x); ECP4_copy(&x3Q, &x2Q); ECP4_mul(&x3Q, x); ECP4_copy(&x4Q, &x3Q); ECP4_mul(&x4Q, x); #if SIGN_OF_X_ZZZ==NEGATIVEX ECP4_neg(&xQ); ECP4_neg(&x3Q); #endif ECP4_sub(&x4Q, &x3Q); ECP4_sub(&x4Q, Q); ECP4_sub(&x3Q, &x2Q); ECP4_frob(&x3Q, X, 1); ECP4_sub(&x2Q, &xQ); ECP4_frob(&x2Q, X, 2); ECP4_sub(&xQ, Q); ECP4_frob(&xQ, X, 3); ECP4_dbl(Q); ECP4_frob(Q, X, 4); ECP4_add(Q, &x4Q); ECP4_add(Q, &x3Q); ECP4_add(Q, &x2Q); ECP4_add(Q, &xQ); ECP4_affine(Q); } // ECP$ Get Group Generator int ZZZ::ECP4_generator(ECP4 *G) { BIG a, b; FP2 Aa, Bb; FP4 X, Y; BIG_rcopy(a, CURVE_Pxaa); BIG_rcopy(b, CURVE_Pxab); FP2_from_BIGs(&Aa, a, b); BIG_rcopy(a, CURVE_Pxba); BIG_rcopy(b, CURVE_Pxbb); FP2_from_BIGs(&Bb, a, b); FP4_from_FP2s(&X, &Aa, &Bb); BIG_rcopy(a, CURVE_Pyaa); BIG_rcopy(b, CURVE_Pyab); FP2_from_BIGs(&Aa, a, b); BIG_rcopy(a, CURVE_Pyba); BIG_rcopy(b, CURVE_Pybb); FP2_from_BIGs(&Bb, a, b); FP4_from_FP2s(&Y, &Aa, &Bb); return ECP4_set(G, &X, &Y); }