MastersThesis/PQ_TIIGER_TLS/sal/miracl-ubuntu22-11-04-24/includes/pair8.cpp

1182 lines
25 KiB
C++
Raw Normal View History

2024-04-15 09:53:30 +00:00
/*
* Copyright (c) 2012-2020 MIRACL UK Ltd.
*
* This file is part of MIRACL Core
* (see https://github.com/miracl/core).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* CORE BLS Curve pairing functions */
//#define HAS_MAIN
#include "pair8_ZZZ.h"
using namespace XXX;
using namespace YYY;
namespace ZZZ {
static void PAIR_line(FP48 *, ECP8 *, ECP8 *, FP *, FP *);
static void PAIR_double(ECP8 *, FP8 *, FP8 *, FP8 *);
static void PAIR_add(ECP8 *, ECP8 *B, FP8 *, FP8 *, FP8 *);
static void PAIR_pack(FP16 *, FP8 *, FP8 *, FP8 *);
static void PAIR_unpack(FP48 *, FP16 *, FP *, FP *);
static void glv(BIG u[2], BIG);
static void gs(BIG u[4], BIG);
}
// Point doubling for pairings
static void ZZZ::PAIR_double(ECP8 *A, FP8 *AA, FP8 *BB, FP8 *CC)
{
FP8 YY;
FP8_copy(CC, &(A->x)); //FP8 XX=new FP8(A.getx()); //X
FP8_copy(&YY, &(A->y)); //FP8 YY=new FP8(A.gety()); //Y
FP8_copy(BB, &(A->z)); //FP8 ZZ=new FP8(A.getz()); //Z
FP8_copy(AA, &YY); //FP8 YZ=new FP8(YY); //Y
FP8_mul(AA, AA, BB); //YZ.mul(ZZ); //YZ
FP8_sqr(CC, CC); //XX.sqr(); //X^2
FP8_sqr(&YY, &YY); //YY.sqr(); //Y^2
FP8_sqr(BB, BB); //ZZ.sqr(); //Z^2
FP8_add(AA, AA, AA);
FP8_neg(AA, AA);
FP8_norm(AA); // -2YZ
FP8_times_i(AA); // -2YZi
FP8_imul(BB, BB, 3 * CURVE_B_I); //3Bz^2
FP8_imul(CC, CC, 3); //3X^2
#if SEXTIC_TWIST_ZZZ==D_TYPE
FP8_times_i(&YY); // Y^2.i
FP8_times_i(CC); // 3X^2.i
#endif
#if SEXTIC_TWIST_ZZZ==M_TYPE
FP8_times_i(BB); // 3Bz^2.i
#endif
FP8_sub(BB, BB, &YY);
FP8_norm(BB);
ECP8_dbl(A); //A.dbl();
}
// Point addition for pairings
static void ZZZ::PAIR_add(ECP8 *A, ECP8 *B, FP8 *AA, FP8 *BB, FP8 *CC)
{
FP8 T1;
FP8_copy(AA, &(A->x)); //FP8 X1=new FP8(A.getx()); // X1
FP8_copy(CC, &(A->y)); //FP8 Y1=new FP8(A.gety()); // Y1
FP8_copy(&T1, &(A->z)); //FP8 T1=new FP8(A.getz()); // Z1
FP8_copy(BB, &T1); //FP8 T2=new FP8(A.getz()); // Z1
FP8_mul(&T1, &T1, &(B->y)); //T1.mul(B.gety()); // T1=Z1.Y2
FP8_mul(BB, BB, &(B->x)); //T2.mul(B.getx()); // T2=Z1.X2
FP8_sub(AA, AA, BB); //X1.sub(T2);
FP8_norm(AA); //X1.norm(); // X1=X1-Z1.X2
FP8_sub(CC, CC, &T1); //Y1.sub(T1);
FP8_norm(CC); //Y1.norm(); // Y1=Y1-Z1.Y2
FP8_copy(&T1, AA); //T1.copy(X1); // T1=X1-Z1.X2
#if SEXTIC_TWIST_ZZZ==M_TYPE
FP8_times_i(AA);
FP8_norm(AA);
#endif
FP8_mul(&T1, &T1, &(B->y)); //T1.mul(B.gety()); // T1=(X1-Z1.X2).Y2
FP8_copy(BB, CC); //T2.copy(Y1); // T2=Y1-Z1.Y2
FP8_mul(BB, BB, &(B->x)); //T2.mul(B.getx()); // T2=(Y1-Z1.Y2).X2
FP8_sub(BB, BB, &T1); //T2.sub(T1);
FP8_norm(BB); //T2.norm(); // T2=(Y1-Z1.Y2).X2 - (X1-Z1.X2).Y2
FP8_neg(CC, CC); //Y1.neg();
FP8_norm(CC); //Y1.norm(); // Y1=-(Y1-Z1.Y2).Xs - ***
ECP8_add(A, B); //A.add(B);
}
/* Line function */
static void ZZZ::PAIR_line(FP48 *v, ECP8 *A, ECP8 *B, FP *Qx, FP *Qy)
{
FP8 AA, BB, CC;
FP16 a, b, c;
if (A == B)
PAIR_double(A, &AA, &BB, &CC);
else
PAIR_add(A, B, &AA, &BB, &CC);
FP8_tmul(&CC, &CC, Qx);
FP8_tmul(&AA, &AA, Qy);
FP16_from_FP8s(&a, &AA, &BB);
#if SEXTIC_TWIST_ZZZ==D_TYPE
FP16_from_FP8(&b, &CC);
FP16_zero(&c);
#endif
#if SEXTIC_TWIST_ZZZ==M_TYPE
FP16_zero(&b);
FP16_from_FP8H(&c, &CC);
#endif
FP48_from_FP16s(v, &a, &b, &c);
v->type = FP_SPARSER;
}
/* prepare ate parameter, n=6u+2 (BN) or n=u (BLS), n3=3*n */
int ZZZ::PAIR_nbits(BIG n3, BIG n)
{
BIG x;
BIG_rcopy(x, CURVE_Bnx);
BIG_copy(n, x);
BIG_norm(n);
BIG_pmul(n3, n, 3);
BIG_norm(n3);
return BIG_nbits(n3);
}
/*
For multi-pairing, product of n pairings
1. Declare FP48 array of length number of bits in Ate parameter
2. Initialise this array by calling PAIR_initmp()
3. Accumulate each pairing by calling PAIR_another() n times
4. Call PAIR_miller()
5. Call final exponentiation PAIR_fexp()
*/
/* prepare for multi-pairing */
void ZZZ::PAIR_initmp(FP48 r[])
{
int i;
for (i = ATE_BITS_ZZZ - 1; i >= 0; i--)
FP48_one(&r[i]);
return;
}
/* basic Miller loop */
void ZZZ::PAIR_miller(FP48 *res, FP48 r[])
{
int i;
FP48_one(res);
for (i = ATE_BITS_ZZZ - 1; i >= 1; i--)
{
FP48_sqr(res, res);
FP48_ssmul(res, &r[i]);
FP48_zero(&r[i]);
}
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(res, res);
#endif
FP48_ssmul(res, &r[0]);
FP48_zero(&r[0]);
return;
}
// Store precomputed line details in an FP4
static void ZZZ::PAIR_pack(FP16 *T, FP8* AA, FP8* BB, FP8 *CC)
{
FP8 I, A, B;
FP8_inv(&I, CC, NULL);
FP8_mul(&A, AA, &I);
FP8_mul(&B, BB, &I);
FP16_from_FP8s(T, &A, &B);
}
// Unpack G2 line function details and include G1
static void ZZZ::PAIR_unpack(FP48 *v, FP16* T, FP *Qx, FP *Qy)
{
FP16 a, b, c;
FP8 t;
FP16_copy(&a, T);
FP8_tmul(&a.a, &a.a, Qy);
FP8_from_FP(&t, Qx);
#if SEXTIC_TWIST_ZZZ==D_TYPE
FP16_from_FP8(&b, &t);
FP16_zero(&c);
#endif
#if SEXTIC_TWIST_ZZZ==M_TYPE
FP16_zero(&b);
FP16_from_FP8H(&c, &t);
#endif
FP48_from_FP16s(v, &a, &b, &c);
v->type = FP_SPARSEST;
}
// Precompute table of line functions for fixed G2 value
void ZZZ::PAIR_precomp(FP16 T[], ECP8* GV)
{
int i, j, nb, bt;
BIG n, n3;
FP8 AA, BB, CC;
ECP8 A, G, NG;
ECP8_copy(&A, GV);
ECP8_copy(&G, GV);
ECP8_copy(&NG, GV);
ECP8_neg(&NG);
nb = PAIR_nbits(n3, n);
j = 0;
for (i = nb - 2; i >= 1; i--)
{
PAIR_double(&A, &AA, &BB, &CC);
PAIR_pack(&T[j++], &AA, &BB, &CC);
bt = BIG_bit(n3, i) - BIG_bit(n, i); // bt=BIG_bit(n,i);
if (bt == 1)
{
PAIR_add(&A, &G, &AA, &BB, &CC);
PAIR_pack(&T[j++], &AA, &BB, &CC);
}
if (bt == -1)
{
PAIR_add(&A, &NG, &AA, &BB, &CC);
PAIR_pack(&T[j++], &AA, &BB, &CC);
}
}
}
/* Accumulate another set of line functions for n-pairing, assuming precomputation on G2 */
void ZZZ::PAIR_another_pc(FP48 r[], FP16 T[], ECP *QV)
{
int i, j, nb, bt;
BIG x, n, n3;
FP48 lv, lv2;
ECP Q;
FP Qx, Qy;
if (ECP_isinf(QV)) return;
nb = PAIR_nbits(n3, n);
ECP_copy(&Q, QV);
ECP_affine(&Q);
FP_copy(&Qx, &(Q.x));
FP_copy(&Qy, &(Q.y));
j = 0;
for (i = nb - 2; i >= 1; i--)
{
PAIR_unpack(&lv, &T[j++], &Qx, &Qy);
bt = BIG_bit(n3, i) - BIG_bit(n, i); // bt=BIG_bit(n,i);
if (bt == 1)
{
PAIR_unpack(&lv2, &T[j++], &Qx, &Qy);
FP48_smul(&lv, &lv2);
}
if (bt == -1)
{
PAIR_unpack(&lv2, &T[j++], &Qx, &Qy);
FP48_smul(&lv, &lv2);
}
FP48_ssmul(&r[i], &lv);
}
}
/* Accumulate another set of line functions for n-pairing */
void ZZZ::PAIR_another(FP48 r[], ECP8* PV, ECP* QV)
{
int i, j, nb, bt;
BIG x, n, n3;
FP48 lv, lv2;
ECP8 A, NP, P;
ECP Q;
FP Qx, Qy;
if (ECP_isinf(QV)) return;
nb = PAIR_nbits(n3, n);
ECP8_copy(&P, PV);
ECP_copy(&Q, QV);
ECP8_affine(&P);
ECP_affine(&Q);
FP_copy(&Qx, &(Q.x));
FP_copy(&Qy, &(Q.y));
ECP8_copy(&A, &P);
ECP8_copy(&NP, &P); ECP8_neg(&NP);
for (i = nb - 2; i >= 1; i--)
{
PAIR_line(&lv, &A, &A, &Qx, &Qy);
bt = BIG_bit(n3, i) - BIG_bit(n, i); // bt=BIG_bit(n,i);
if (bt == 1)
{
PAIR_line(&lv2, &A, &P, &Qx, &Qy);
FP48_smul(&lv, &lv2);
}
if (bt == -1)
{
PAIR_line(&lv2, &A, &NP, &Qx, &Qy);
FP48_smul(&lv, &lv2);
}
FP48_ssmul(&r[i], &lv);
}
}
/* Optimal R-ate pairing r=e(P,Q) */
void ZZZ::PAIR_ate(FP48 *r, ECP8 *P1, ECP *Q1)
{
BIG x, n, n3;
FP Qx, Qy;
int i, nb, bt;
ECP8 A, NP, P;
ECP Q;
FP48 lv, lv2;
FP48_one(r);
if (ECP_isinf(Q1)) return;
nb = PAIR_nbits(n3, n);
ECP8_copy(&P, P1);
ECP_copy(&Q, Q1);
ECP8_affine(&P);
ECP_affine(&Q);
FP_copy(&Qx, &(Q.x));
FP_copy(&Qy, &(Q.y));
ECP8_copy(&A, &P);
ECP8_copy(&NP, &P); ECP8_neg(&NP);
/* Main Miller Loop */
for (i = nb - 2; i >= 1; i--)
{
FP48_sqr(r, r);
PAIR_line(&lv, &A, &A, &Qx, &Qy);
bt = BIG_bit(n3, i) - BIG_bit(n, i); // BIG_bit(n,i);
if (bt == 1)
{
PAIR_line(&lv2, &A, &P, &Qx, &Qy);
FP48_smul(&lv, &lv2);
}
if (bt == -1)
{
PAIR_line(&lv2, &A, &NP, &Qx, &Qy);
FP48_smul(&lv, &lv2);
}
FP48_ssmul(r, &lv);
}
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(r, r);
#endif
}
/* Optimal R-ate double pairing e(P,Q).e(R,S) */
void ZZZ::PAIR_double_ate(FP48 *r, ECP8 *P1, ECP *Q1, ECP8 *R1, ECP *S1)
{
BIG x, n, n3;
FP Qx, Qy, Sx, Sy;
int i, nb, bt;
ECP8 A, B, NP, NR, P, R;
ECP Q, S;
FP48 lv, lv2;
if (ECP_isinf(Q1))
{
PAIR_ate(r, R1, S1);
return;
}
if (ECP_isinf(S1))
{
PAIR_ate(r, P1, Q1);
return;
}
nb = PAIR_nbits(n3, n);
ECP8_copy(&P, P1);
ECP_copy(&Q, Q1);
ECP8_affine(&P);
ECP_affine(&Q);
ECP8_copy(&R, R1);
ECP_copy(&S, S1);
ECP8_affine(&R);
ECP_affine(&S);
FP_copy(&Qx, &(Q.x));
FP_copy(&Qy, &(Q.y));
FP_copy(&Sx, &(S.x));
FP_copy(&Sy, &(S.y));
ECP8_copy(&A, &P);
ECP8_copy(&B, &R);
ECP8_copy(&NP, &P); ECP8_neg(&NP);
ECP8_copy(&NR, &R); ECP8_neg(&NR);
FP48_one(r);
/* Main Miller Loop */
for (i = nb - 2; i >= 1; i--)
{
FP48_sqr(r, r);
PAIR_line(&lv, &A, &A, &Qx, &Qy);
PAIR_line(&lv2, &B, &B, &Sx, &Sy);
FP48_smul(&lv, &lv2);
FP48_ssmul(r, &lv);
bt = BIG_bit(n3, i) - BIG_bit(n, i); // bt=BIG_bit(n,i);
if (bt == 1)
{
PAIR_line(&lv, &A, &P, &Qx, &Qy);
PAIR_line(&lv2, &B, &R, &Sx, &Sy);
FP48_smul(&lv, &lv2);
FP48_ssmul(r, &lv);
}
if (bt == -1)
{
PAIR_line(&lv, &A, &NP, &Qx, &Qy);
PAIR_line(&lv2, &B, &NR, &Sx, &Sy);
FP48_smul(&lv, &lv2);
FP48_ssmul(r, &lv);
}
}
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(r, r);
#endif
}
/* final exponentiation - keep separate for multi-pairings and to avoid thrashing stack */
void ZZZ::PAIR_fexp(FP48 *r)
{
FP2 X;
BIG x;
FP a, b;
FP48 t0, t1, t2;//, t3;
BIG_rcopy(x, CURVE_Bnx);
FP_rcopy(&a, Fra);
FP_rcopy(&b, Frb);
FP2_from_FPs(&X, &a, &b);
/* Easy part of final exp - r^(p^24-1)(p^8+1)*/
FP48_inv(&t0, r);
FP48_conj(r, r);
FP48_mul(r, &t0);
FP48_copy(&t0, r);
FP48_frob(r, &X, 8);
FP48_mul(r, &t0);
// See https://eprint.iacr.org/2020/875.pdf
FP48_usqr(&t2,r);
FP48_mul(&t2,r); // t2=r^3
FP48_pow(&t1,r,x); // t1=r^x
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_conj(&t0,r); // t0=r^-1
FP48_copy(r,&t1);
FP48_mul(r,&t0); // r=r^(x-1)
FP48_pow(&t1,r,x); // t1=r^x
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_conj(&t0,r); // t0=r^-1
FP48_copy(r,&t1);
FP48_mul(r,&t0); // r=r^(x-1)
// ^(x+p)
FP48_pow(&t1,r,x); // t1=r^x
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t0,r);
FP48_frob(&t0,&X,1); // t0=r^p
FP48_copy(r,&t1);
FP48_mul(r,&t0); // r=r^x.r^p
// ^(x^2+p^2)
FP48_pow(&t1,r,x);
FP48_pow(&t1,&t1,x); // t1=r^x^2
FP48_copy(&t0,r);
FP48_frob(&t0,&X,2); // t0=r^p^2
FP48_mul(&t1,&t0); // t1=r^x^2.r^p^2
FP48_copy(r,&t1);
// ^(x^4+p^4)
FP48_pow(&t1,r,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x); // t1=r^x^4
FP48_copy(&t0,r);
FP48_frob(&t0,&X,4); // t0=r^p^4
FP48_mul(&t1,&t0); // t1=r^x^4.r^p^4
FP48_copy(r,&t1);
// ^(x^8+p^8-1)
FP48_pow(&t1,r,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x);
FP48_pow(&t1,&t1,x); // t1=r^x^8
FP48_copy(&t0,r);
FP48_frob(&t0,&X,8); // t0=r^p^8
FP48_mul(&t1,&t0); // t1=r^x^8.r^p^8
FP48_conj(&t0,r); // t0=r^-1
FP48_copy(r,&t1);
FP48_mul(r,&t0); // r=r^x^4.r^p^4.r^-1
FP48_mul(r,&t2);
FP48_reduce(r);
/*
// f^e0.f^e1^p.f^e2^p^2.. .. f^e14^p^14.f^e15^p^15
FP48_usqr(&t7, r); // t7=f^2
if (BIG_parity(x) == 1)
{
FP48_pow(&t2, r, x); // f^u
FP48_usqr(&t1, &t2); // f^(2u)
FP48_pow(&t2, &t2, x); // f^u^2
} else {
FP48_pow(&t1, &t7, x); // t1=f^2u
BIG_fshr(x, 1);
FP48_pow(&t2, &t1, x); // t2=f^2u^(u/2) = f^u^2
BIG_fshl(x, 1); // x must be even
}
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_conj(&t3, &t1); // t3=f^-2u
FP48_mul(&t2, &t3); // t2=f^u^2.f^-2u
FP48_mul(&t2, r); // t2=f^u^2.f^-2u.f = f^(u^2-2u+1) = f^e15
FP48_mul(r, &t7); // f^3
FP48_pow(&t1, &t2, x); // f^e15^u = f^(u.e15) = f^(u^3-2u^2+u) = f^(e14)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 14); // f^(u^3-2u^2+u)^p^14
FP48_mul(r, &t3); // f^3.f^(u^3-2u^2+u)^p^14
FP48_pow(&t1, &t1, x); // f^(u.e14) = f^(u^4-2u^3+u^2) = f^(e13)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 13); // f^(e13)^p^13
FP48_mul(r, &t3); // f^3.f^(u^3-2u^2+u)^p^14.f^(u^4-2u^3+u^2)^p^13
FP48_pow(&t1, &t1, x); // f^(u.e13)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 12); // f^(e12)^p^12
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e12)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 11); // f^(e11)^p^11
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e11)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 10); // f^(e10)^p^10
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e10)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 9); // f^(e9)^p^9
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e9)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 8); // f^(e8)^p^8
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e8)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_conj(&t3, &t2);
FP48_mul(&t1, &t3); // f^(u.e8).f^-e15
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 7); // f^(e7)^p^7
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e7)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 6); // f^(e6)^p^6
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e6)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 5); // f^(e5)^p^5
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e5)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 4); // f^(e4)^p^4
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e4)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 3); // f^(e3)^p^3
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e3)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 2); // f^(e2)^p^2
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e2)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_copy(&t3, &t1);
FP48_frob(&t3, &X, 1); // f^(e1)^p^1
FP48_mul(r, &t3);
FP48_pow(&t1, &t1, x); // f^(u.e1)
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t1, &t1);
#endif
FP48_mul(r, &t1); // r.f^e0
FP48_frob(&t2, &X, 15); // f^(e15.p^15)
FP48_mul(r, &t2);
FP48_reduce(r);
*/
}
#ifdef USE_GLV_ZZZ
/* GLV method */
static void ZZZ::glv(BIG u[2], BIG ee)
{
int bd;
BIG q,x,x2;
BIG_rcopy(q, CURVE_Order);
// -(x^8).P = (Beta.x,y)
BIG_rcopy(x, CURVE_Bnx);
BIG_smul(x2, x, x);
BIG_smul(x, x2, x2);
BIG_smul(x2, x, x);
bd=BIG_nbits(q)-BIG_nbits(x2); // fixed x^8
BIG_copy(u[0], ee);
BIG_ctmod(u[0], x2, bd);
BIG_copy(u[1], ee);
BIG_ctsdiv(u[1], x2, bd);
BIG_sub(u[1], q, u[1]);
return;
}
#endif // USE_GLV
/* Galbraith & Scott Method */
static void ZZZ::gs(BIG u[16], BIG ee)
{
int i,bd;
BIG q,x,w;
BIG_rcopy(q, CURVE_Order);
BIG_rcopy(x, CURVE_Bnx);
BIG_copy(w, ee);
bd=BIG_nbits(q)-BIG_nbits(x); // fixed
for (i = 0; i < 15; i++)
{
BIG_copy(u[i], w);
BIG_ctmod(u[i], x, bd);
BIG_ctsdiv(w, x, bd);
}
BIG_copy(u[15], w);
/* */
#if SIGN_OF_X_ZZZ==NEGATIVEX
BIG_modneg(u[1], u[1], q);
BIG_modneg(u[3], u[3], q);
BIG_modneg(u[5], u[5], q);
BIG_modneg(u[7], u[7], q);
BIG_modneg(u[9], u[9], q);
BIG_modneg(u[11], u[11], q);
BIG_modneg(u[13], u[13], q);
BIG_modneg(u[15], u[15], q);
#endif
return;
}
/* Multiply P by e in group G1 */
void ZZZ::PAIR_G1mul(ECP *P, BIG e)
{
BIG ee,q;
BIG_copy(ee,e);
BIG_rcopy(q, CURVE_Order);
BIG_mod(ee,q);
#ifdef USE_GLV_ZZZ /* Note this method is patented */
int np, nn;
ECP Q;
FP cru;
BIG t;
BIG u[2];
glv(u, ee);
ECP_copy(&Q, P); ECP_affine(&Q);
FP_rcopy(&cru, CRu);
FP_mul(&(Q.x), &(Q.x), &cru);
/* note that -a.B = a.(-B). Use a or -a depending on which is smaller */
np = BIG_nbits(u[0]);
BIG_modneg(t, u[0], q);
nn = BIG_nbits(t);
if (nn < np)
{
BIG_copy(u[0], t);
ECP_neg(P);
}
np = BIG_nbits(u[1]);
BIG_modneg(t, u[1], q);
nn = BIG_nbits(t);
if (nn < np)
{
BIG_copy(u[1], t);
ECP_neg(&Q);
}
BIG_norm(u[0]);
BIG_norm(u[1]);
ECP_mul2(P, &Q, u[0], u[1]);
#else
ECP_clmul(P, ee, q);
#endif
}
/* Multiply P by e in group G2 */
void ZZZ::PAIR_G2mul(ECP8 *P, BIG e)
{
BIG ee,q;
BIG_copy(ee,e);
BIG_rcopy(q, CURVE_Order);
BIG_mod(ee,q);
#ifdef USE_GS_G2_ZZZ /* Well we didn't patent it :) */
int i, np, nn;
ECP8 Q[16], T;
FP2 X[3];
BIG x, u[16];
ECP8_frob_constants(X);
gs(u, ee);
ECP8_copy(&Q[0], P);
for (i = 1; i < 16; i++)
{
ECP8_copy(&Q[i], &Q[i - 1]);
ECP8_frob(&Q[i], X, 1);
}
for (i = 0; i < 16; i++)
{
np = BIG_nbits(u[i]);
BIG_modneg(x, u[i], q);
BIG_norm(x);
nn = BIG_nbits(x);
if (nn < np)
{
BIG_copy(u[i], x);
ECP8_neg(&Q[i]);
}
BIG_norm(u[i]);
}
ECP8_mul16(P, Q, u);
#else
ECP8_mul(P, ee);
#endif
}
/* f=f^e */
void ZZZ::PAIR_GTpow(FP48 *f, BIG e)
{
BIG ee,q;
BIG_copy(ee,e);
BIG_rcopy(q, CURVE_Order);
BIG_mod(ee,q);
#ifdef USE_GS_GT_ZZZ /* Note that this option requires a lot of RAM! Maybe better to use compressed XTR method, see FP16.cpp */
int i, np, nn;
FP48 g[16];
FP2 X;
BIG t;
FP fx, fy;
BIG u[16];
FP_rcopy(&fx, Fra);
FP_rcopy(&fy, Frb);
FP2_from_FPs(&X, &fx, &fy);
gs(u, ee);
FP48_copy(&g[0], f);
for (i = 1; i < 16; i++)
{
FP48_copy(&g[i], &g[i - 1]);
FP48_frob(&g[i], &X, 1);
}
for (i = 0; i < 16; i++)
{
np = BIG_nbits(u[i]);
BIG_modneg(t, u[i], q);
nn = BIG_nbits(t);
if (nn < np)
{
BIG_copy(u[i], t);
FP48_conj(&g[i], &g[i]);
}
BIG_norm(u[i]);
}
FP48_pow16(f, g, u);
#else
FP48_pow(f, f, ee);
#endif
}
/* test G1 group membership */
int ZZZ::PAIR_G1member(ECP *P)
{
ECP W,T;
BIG x;
FP cru;
if (ECP_isinf(P)) return 0;
BIG_rcopy(x, CURVE_Bnx);
ECP_copy(&W,P);
ECP_copy(&T,P);
ECP_mul(&T,x);
if (ECP_equals(P,&T)) return 0; // P is of low order
ECP_mul(&T,x);
ECP_mul(&T,x); ECP_mul(&T,x);
ECP_mul(&T,x); ECP_mul(&T,x);
ECP_mul(&T,x); ECP_mul(&T,x);
ECP_neg(&T);
FP_rcopy(&cru, CRu);
FP_mul(&(W.x), &(W.x), &cru);
if (!ECP_equals(&W,&T)) return 0; // check that Endomorphism works
// Not needed
// ECP_add(&W,P);
// FP_mul(&(T.x), &(T.x), &cru);
// ECP_add(&W,&T);
// if (!ECP_isinf(&W)) return 0; // use it to check order
/*
BIG q;
ECP W;
if (ECP_isinf(P)) return 0;
BIG_rcopy(q, CURVE_Order);
ECP_copy(&W,P);
ECP_mul(&W,q);
if (!ECP_isinf(&W)) return 0; */
return 1;
}
/* test G2 group membership */
int ZZZ::PAIR_G2member(ECP8 *P)
{
ECP8 W,T;
BIG x;
FP2 X[3];
if (ECP8_isinf(P)) return 0;
ECP8_frob_constants(X);
BIG_rcopy(x, CURVE_Bnx);
ECP8_copy(&W,P);
ECP8_frob(&W, X, 1);
ECP8_copy(&T,P);
ECP8_mul(&T,x);
#if SIGN_OF_X_ZZZ==NEGATIVEX
ECP8_neg(&T);
#endif
/*
ECP8_copy(&R,&W);
ECP8_frob(&R,X,1); // R=\psi^2(P)
ECP8_sub(&W,&R);
ECP8_copy(&R,&T); // R=xP
ECP8_frob(&R,X,1);
ECP8_add(&W,&R); // W=\psi(P)-\psi^2(P)+\psi(xP)
*/
if (ECP8_equals(&W,&T)) return 1;
return 0;
/* BIG q;
ECP8 W;
if (ECP8_isinf(P)) return 0;
BIG_rcopy(q, CURVE_Order);
ECP8_copy(&W,P);
ECP8_mul(&W,q);
if (!ECP8_isinf(&W)) return 0;
return 1; */
}
/* Check that m is in cyclotomic sub-group */
/* Check that m!=1, conj(m)*m==1, and m.m^{p^16}=m^{p^8} */
int ZZZ::PAIR_GTcyclotomic(FP48 *m)
{
FP fx,fy;
FP2 X;
FP48 r,w;
if (FP48_isunity(m)) return 0;
FP48_conj(&r,m);
FP48_mul(&r,m);
if (!FP48_isunity(&r)) return 0;
FP_rcopy(&fx,Fra);
FP_rcopy(&fy,Frb);
FP2_from_FPs(&X,&fx,&fy);
FP48_copy(&r,m); FP48_frob(&r,&X,8);
FP48_copy(&w,&r); FP48_frob(&w,&X,8);
FP48_mul(&w,m);
if (!FP48_equals(&w,&r)) return 0;
return 1;
}
/* test for full GT group membership */
int ZZZ::PAIR_GTmember(FP48 *m)
{
BIG x;
FP2 X;
FP fx, fy;
FP48 r,t;
if (!PAIR_GTcyclotomic(m)) return 0;
FP_rcopy(&fx, Fra);
FP_rcopy(&fy, Frb);
FP2_from_FPs(&X, &fx, &fy);
BIG_rcopy(x, CURVE_Bnx);
FP48_copy(&r,m);
FP48_frob(&r, &X, 1);
FP48_pow(&t,m,x);
#if SIGN_OF_X_ZZZ==NEGATIVEX
FP48_conj(&t,&t);
#endif
if (FP48_equals(&r,&t)) return 1;
return 0;
/*
BIG_rcopy(q, CURVE_Order);
FP48_pow(&r, m, q);
if (!FP48_isunity(&r)) return 0;
return 1; */
}
#ifdef HAS_MAIN
using namespace std;
using namespace ZZZ;
// g++ -O2 pair8_BLS48.cpp ecp8_BLS48.cpp fp48_BLS48.cpp fp16_BLS48.cpp fp8_BLS48.cpp fp4_BLS48.cpp fp2_BLS48.cpp ecp_BLS48.cpp fp_BLS48.cpp big_B560_29.cpp rom_curve_BLS48.cpp rom_field_BLS48.cpp rand.cpp hash.cpp oct.cpp -o pair8_BLS48.exe
int main()
{
int i;
char byt[32];
csprng rng;
BIG xa, xb, ya, yb, w, a, b, t1, q, u[2], v[4], m, r, xx, x2, x4, p;
ECP8 P, G;
ECP Q, R;
FP48 g, gp;
FP16 t, c, cp, cpm1, cpm2;
FP8 X, Y;
FP2 x, y, f, Aa, Bb;
FP cru;
for (i = 0; i < 32; i++)
byt[i] = i + 9;
RAND_seed(&rng, 32, byt);
BIG_rcopy(r, CURVE_Order);
BIG_rcopy(p, Modulus);
BIG_rcopy(xa, CURVE_Gx);
BIG_rcopy(ya, CURVE_Gy);
ECP_set(&Q, xa, ya);
if (Q.inf) printf("Failed to set - point not on curve\n");
else printf("G1 set success\n");
printf("Q= ");
ECP_output(&Q);
printf("\n");
ECP8_generator(&P);
if (P.inf) printf("Failed to set - point not on curve\n");
else printf("G2 set success\n");
BIG_rcopy(a, Fra);
BIG_rcopy(b, Frb);
FP2_from_BIGs(&f, a, b);
PAIR_ate(&g, &P, &Q);
printf("gb= ");
FP48_output(&g);
printf("\n");
PAIR_fexp(&g);
printf("g= ");
FP48_output(&g);
printf("\n");
ECP_copy(&R, &Q);
ECP8_copy(&G, &P);
ECP8_dbl(&G);
ECP_dbl(&R);
ECP_affine(&R);
PAIR_ate(&g, &G, &Q);
PAIR_fexp(&g);
printf("g1= ");
FP48_output(&g);
printf("\n");
PAIR_ate(&g, &P, &R);
PAIR_fexp(&g);
printf("g2= ");
FP48_output(&g);
printf("\n");
PAIR_G1mul(&Q, r);
printf("rQ= "); ECP_output(&Q); printf("\n");
PAIR_G2mul(&P, r);
printf("rP= "); ECP8_output(&P); printf("\n");
PAIR_GTpow(&g, r);
printf("g^r= "); FP48_output(&g); printf("\n");
BIG_randomnum(w, r, &rng);
FP48_copy(&gp, &g);
PAIR_GTpow(&g, w);
FP48_trace(&t, &g);
printf("g^r= "); FP16_output(&t); printf("\n");
FP48_compow(&t, &gp, w, r);
printf("t(g)= "); FP16_output(&t); printf("\n");
}
#endif