MastersThesis/PQ_TIIGER_TLS/sal/miracl-winx86-11-04-24/includes/ecp_BLS12383.h

373 lines
14 KiB
C
Raw Permalink Normal View History

2024-04-15 09:53:30 +00:00
/*
* Copyright (c) 2012-2020 MIRACL UK Ltd.
*
* This file is part of MIRACL Core
* (see https://github.com/miracl/core).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ECP_BLS12383_H
#define ECP_BLS12383_H
#include "fp_BLS12383.h"
#include "config_curve_BLS12383.h"
using namespace core;
namespace BLS12383 {
/* Curve Params - see rom*.cpp */
extern const int CURVE_B_I;
extern const int CURVE_Cof_I;
extern const B384_29::BIG CURVE_B; /**< Elliptic curve B parameter */
extern const B384_29::BIG CURVE_Order; /**< Elliptic curve group order */
extern const B384_29::BIG CURVE_Cof; /**< Elliptic curve cofactor */
extern const B384_29::BIG CURVE_HTPC; /**< Hash to Point precomputation */
extern const B384_29::BIG CURVE_HTPC2; /**< Hash to Point precomputation for G2 */
extern const B384_29::BIG CURVE_Ad;
extern const B384_29::BIG CURVE_Bd;
extern const B384_29::BIG PC[];
extern const B384_29::BIG CURVE_Adr;
extern const B384_29::BIG CURVE_Adi;
extern const B384_29::BIG CURVE_Bdr;
extern const B384_29::BIG CURVE_Bdi;
extern const B384_29::BIG PCR[];
extern const B384_29::BIG PCI[];
/* Generator point on G1 */
extern const B384_29::BIG CURVE_Gx; /**< x-coordinate of generator point in group G1 */
extern const B384_29::BIG CURVE_Gy; /**< y-coordinate of generator point in group G1 */
/* For Pairings only */
/* Generator point on G2 */
extern const B384_29::BIG CURVE_Pxa; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxb; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pya; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyb; /**< imaginary part of y-coordinate of generator point in group G2 */
/*** needed for BLS24 curves ***/
extern const B384_29::BIG CURVE_Pxaa; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxab; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxba; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxbb; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyaa; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyab; /**< imaginary part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyba; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pybb; /**< imaginary part of y-coordinate of generator point in group G2 */
/*** needed for BLS48 curves ***/
extern const B384_29::BIG CURVE_Pxaaa; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxaab; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxaba; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxabb; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxbaa; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxbab; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxbba; /**< real part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pxbbb; /**< imaginary part of x-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyaaa; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyaab; /**< imaginary part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyaba; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pyabb; /**< imaginary part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pybaa; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pybab; /**< imaginary part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pybba; /**< real part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Pybbb; /**< imaginary part of y-coordinate of generator point in group G2 */
extern const B384_29::BIG CURVE_Bnx; /**< BN curve x parameter */
extern const B384_29::BIG Fra; /**< real part of BN curve Frobenius Constant */
extern const B384_29::BIG Frb; /**< imaginary part of BN curve Frobenius Constant */
extern const B384_29::BIG CURVE_W[2]; /**< BN curve constant for GLV decomposition */
extern const B384_29::BIG CURVE_SB[2][2]; /**< BN curve constant for GLV decomposition */
extern const B384_29::BIG CURVE_WB[4]; /**< BN curve constant for GS decomposition */
extern const B384_29::BIG CURVE_BB[4][4]; /**< BN curve constant for GS decomposition */
/**
@brief ECP structure - Elliptic Curve Point over base field
*/
typedef struct
{
// int inf; /**< Infinity Flag - not needed for Edwards representation */
BLS12383::FP x; /**< x-coordinate of point */
#if CURVETYPE_BLS12383!=MONTGOMERY
BLS12383::FP y; /**< y-coordinate of point. Not needed for Montgomery representation */
#endif
BLS12383::FP z;/**< z-coordinate of point */
} ECP;
/* ECP E(Fp) prototypes */
/** @brief Tests for ECP point equal to infinity
*
@param P ECP point to be tested
@return 1 if infinity, else returns 0
*/
extern int ECP_isinf(ECP *P);
/** @brief Tests for equality of two ECPs
*
@param P ECP instance to be compared
@param Q ECP instance to be compared
@return 1 if P=Q, else returns 0
*/
extern int ECP_equals(ECP *P, ECP *Q);
/** @brief Copy ECP point to another ECP point
*
@param P ECP instance, on exit = Q
@param Q ECP instance to be copied
*/
extern void ECP_copy(ECP *P, ECP *Q);
/** @brief Negation of an ECP point
*
@param P ECP instance, on exit = -P
*/
extern void ECP_neg(ECP *P);
/** @brief Set ECP to point-at-infinity
*
@param P ECP instance to be set to infinity
*/
extern void ECP_inf(ECP *P);
/** @brief Calculate Right Hand Side of curve equation y^2=f(x)
*
Function f(x) depends on form of elliptic curve, Weierstrass, Edwards or Montgomery.
Used internally.
@param r BIG n-residue value of f(x)
@param x BIG n-residue x
*/
extern void ECP_rhs(BLS12383::FP *r, BLS12383::FP *x);
/** @brief Set ECP to point(x,y) given just x and sign of y
*
Point P set to infinity if no such point on the curve. If x is on the curve then y is calculated from the curve equation.
The correct y value (plus or minus) is selected given its sign s.
@param P ECP instance to be set (x,[y])
@param x BIG x coordinate of point
@param s an integer representing the "sign" of y, in fact its least significant bit.
*/
extern int ECP_setx(ECP *P, B384_29::BIG x, int s);
#if CURVETYPE_BLS12383==MONTGOMERY
/** @brief Set ECP to point(x,[y]) given x
*
Point P set to infinity if no such point on the curve. Note that y coordinate is not needed.
@param P ECP instance to be set (x,[y])
@param x BIG x coordinate of point
@return 1 if point exists, else 0
*/
extern int ECP_set(ECP *P, B384_29::BIG x);
/** @brief Extract x coordinate of an ECP point P
*
@param x BIG on exit = x coordinate of point
@param P ECP instance (x,[y])
@return -1 if P is point-at-infinity, else 0
*/
extern int ECP_get(B384_29::BIG x, ECP *P);
/** @brief Adds ECP instance Q to ECP instance P, given difference D=P-Q
*
Differential addition of points on a Montgomery curve
@param P ECP instance, on exit =P+Q
@param Q ECP instance to be added to P
@param D Difference between P and Q
*/
extern void ECP_add(ECP *P, ECP *Q, ECP *D);
#else
/** @brief Set ECP to point(x,y) given x and y
*
Point P set to infinity if no such point on the curve.
@param P ECP instance to be set (x,y)
@param x BIG x coordinate of point
@param y BIG y coordinate of point
@return 1 if point exists, else 0
*/
extern int ECP_set(ECP *P, B384_29::BIG x, B384_29::BIG y);
/** @brief Extract x and y coordinates of an ECP point P
*
If x=y, returns only x
@param x BIG on exit = x coordinate of point
@param y BIG on exit = y coordinate of point (unless x=y)
@param P ECP instance (x,y)
@return sign of y, or -1 if P is point-at-infinity
*/
extern int ECP_get(B384_29::BIG x, B384_29::BIG y, ECP *P);
/** @brief Adds ECP instance Q to ECP instance P
*
@param P ECP instance, on exit =P+Q
@param Q ECP instance to be added to P
*/
extern void ECP_add(ECP *P, ECP *Q);
/** @brief Subtracts ECP instance Q from ECP instance P
*
@param P ECP instance, on exit =P-Q
@param Q ECP instance to be subtracted from P
*/
extern void ECP_sub(ECP *P, ECP *Q);
#endif
/** @brief Converts an ECP point from Projective (x,y,z) coordinates to affine (x,y) coordinates
*
@param P ECP instance to be converted to affine form
*/
extern void ECP_affine(ECP *P);
/** @brief Formats and outputs an ECP point to the console, in projective coordinates
*
@param P ECP instance to be printed
*/
extern void ECP_outputxyz(ECP *P);
/** @brief Formats and outputs an ECP point to the console, converted to affine coordinates
*
@param P ECP instance to be printed
*/
extern void ECP_output(ECP * P);
/** @brief Formats and outputs an ECP point to the console
*
@param P ECP instance to be printed
*/
extern void ECP_rawoutput(ECP * P);
/** @brief Formats and outputs an ECP point to an octet string
*
The octet string is normally in the standard form 0x04|x|y
Here x (and y) are the x and y coordinates in left justified big-endian base 256 form.
For Montgomery curve it is 0x06|x
If c is true, only the x coordinate is provided as in 0x2|x if y is even, or 0x3|x if y is odd
@param c compression required, true or false
@param S output octet string
@param P ECP instance to be converted to an octet string
*/
extern void ECP_toOctet(octet *S, ECP *P, bool c);
/** @brief Creates an ECP point from an octet string
*
The octet string is normally in the standard form 0x04|x|y
Here x (and y) are the x and y coordinates in left justified big-endian base 256 form.
For Montgomery curve it is 0x06|x
If in compressed form only the x coordinate is provided as in 0x2|x if y is even, or 0x3|x if y is odd
@param P ECP instance to be created from the octet string
@param S input octet string
@param c true for compression
return 1 if octet string corresponds to a point on the curve, else 0
*/
extern int ECP_fromOctet(ECP *P, octet *S);
/** @brief Doubles an ECP instance P
*
@param P ECP instance, on exit =2*P
*/
extern void ECP_dbl(ECP *P);
/** @brief Multiplies an ECP instance P by a small integer, side-channel resistant
*
@param P ECP instance, on exit =i*P
@param i small integer multiplier
@param b maximum number of bits in multiplier
*/
extern void ECP_pinmul(ECP *P, int i, int b);
/** @brief Multiplies an ECP instance P by a BIG, side-channel resistant
*
Uses Montgomery ladder for Montgomery curves, otherwise fixed sized windows.
@param P ECP instance, on exit =b*P
@param e BIG number multiplier
@param maxe maximum e
*/
extern void ECP_clmul(ECP *P, B384_29::BIG e, B384_29::BIG maxe);
/** @brief Multiplies an ECP instance P by a BIG
*
Uses Montgomery ladder for Montgomery curves, otherwise fixed sized windows.
@param P ECP instance, on exit =b*P
@param b BIG number multiplier
*/
extern void ECP_mul(ECP *P, B384_29::BIG b);
/** @brief Calculates double multiplication P=e*P+f*Q
*
@param P ECP instance, on exit =e*P+f*Q
@param Q ECP instance
@param e BIG number multiplier
@param f BIG number multiplier
*/
extern void ECP_mul2(ECP *P, ECP *Q, B384_29::BIG e, B384_29::BIG f);
/** @brief Calculates double multiplication P=e*P+f*Q, side-channel resistant
*
@param P ECP instance, on exit =e*P+f*Q
@param Q ECP instance
@param e BIG number multiplier
@param f BIG number multiplier
@param maxe maximum multiplier
*/
extern void ECP_clmul2(ECP *P, ECP *Q, B384_29::BIG e, B384_29::BIG f, B384_29::BIG maxe);
/** @brief Calculates multi-multiplication P=Sigma e_i*X_i, side-channel resistant
*
@param P ECP instance, on exit = Sigma e_i*X_i
@param n Number of multiplications
@param X array of n ECPs
@param e array of n BIG multipliers
*/
extern void ECP_muln(ECP *P,int n,ECP X[],B384_29::BIG e[]);
/** @brief Multiplies random point by co-factor
*
@param Q ECP multiplied by co-factor
*/
extern void ECP_cfp(ECP *Q);
/** @brief Maps random FP to curve point in constant time
*
@param Q ECP instance
@param x Fp derived from hash
*/
extern void ECP_map2point(ECP *Q, BLS12383::FP *x);
/** @brief Maps random BIG to curve point using hunt-and-peck
*
@param Q ECP instance
@param x Fp derived from hash
*/
extern void ECP_hap2point(ECP *Q, B384_29::BIG x);
/** @brief Maps random octet to curve point of correct order
*
@param Q ECP instance of correct order
@param w OCTET byte array to be mapped
*/
extern void ECP_mapit(ECP *Q, octet *w);
/** @brief Get Group Generator from ROM
*
@param G ECP instance
@return true or false
*/
extern int ECP_generator(ECP *G);
}
#endif