MastersThesis/PQ_TIIGER_TLS/sal/miracl-winx64-15-04-24/includes/fp_ANSSI.h

335 lines
9.6 KiB
C
Raw Permalink Normal View History

2024-04-15 09:53:30 +00:00
/*
* Copyright (c) 2012-2020 MIRACL UK Ltd.
*
* This file is part of MIRACL Core
* (see https://github.com/miracl/core).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FP_ANSSI_H
#define FP_ANSSI_H
#include "big_B256_56.h"
#include "config_field_ANSSI.h"
using namespace core;
#define MODBITS_ANSSI MBITS_ANSSI
#define TBITS_ANSSI (MBITS_ANSSI%BASEBITS_B256_56) /**< Number of active bits in top word */
#define TMASK_ANSSI (((chunk)1<<TBITS_ANSSI)-1) /**< Mask for active bits in top word */
#define FEXCESS_ANSSI (((sign32)1<<MAXXES_ANSSI)-1) /**< 2^(BASEBITS*NLEN-MODBITS) - normalised BIG can be multiplied by less than this before reduction */
#define OMASK_ANSSI (-((chunk)(1)<<TBITS_ANSSI)) /**< for masking out overflow bits */
namespace ANSSI {
/**
@brief FP Structure - quadratic extension field
*/
typedef struct
{
B256_56::BIG g; /**< Big representation of field element */
sign32 XES; /**< Excess */
} FP;
/* Field Params - see rom.c */
extern const B256_56::BIG Modulus; /**< Actual Modulus set in rom_field*.c */
extern const B256_56::BIG ROI; /**< Root of Unity set in rom_field*.c */
extern const B256_56::BIG R2modp; /**< Montgomery constant */
extern const chunk MConst; /**< Constant associated with Modulus - for Montgomery = 1/p mod 2^BASEBITS */
extern const B256_56::BIG SQRTm3; /**< Square root of -3 */
extern const B256_56::BIG CRu; /**< Cube Root of Unity */
//extern const int BTset; /**< Set Bit in Generalised Mersenne */
extern const B256_56::BIG Fra; /**< real part of Pairing-friendly curve Frobenius Constant */
extern const B256_56::BIG Frb; /**< imaginary part of Pairing-friendly curve Frobenius Constant */
extern const B256_56::BIG TWK; /**< Tweak for square roots, pre-calculated from field norm */
//#define FUSED_MODMUL
//#define DEBUG_REDUCE
/* FP prototypes */
/** @brief Create FP from integer
*
@param x FP to be initialised
@param a integer
*/
extern void FP_from_int(FP *x,int a);
/** @brief Tests for FP equal to zero mod Modulus
*
@param x FP number to be tested
@return 1 if zero, else returns 0
*/
extern int FP_iszilch(FP *x);
/** @brief Tests for lexically largest
*
@param x FP number to be tested if larger than -x
@return 1 if larger, else returns 0
*/
extern int FP_islarger(FP *x);
/** @brief Serialize out FP
*
@param b buffer for output
@param x FP number to be serialized
*/
extern void FP_toBytes(char *b,FP *x);
/** @brief Serialize in FP
*
@param x FP number to be serialized
@param b buffer for input
*/
extern void FP_fromBytes(FP *x,char *b);
/** @brief Tests for FP equal to one mod Modulus
*
@param x FP number to be tested
@return 1 if one, else returns 0
*/
extern int FP_isunity(FP *x);
/** @brief Set FP to zero
*
@param x FP number to be set to 0
*/
extern void FP_zero(FP *x);
/** @brief Copy an FP
*
@param y FP number to be copied to
@param x FP to be copied from
*/
extern void FP_copy(FP *y, FP *x);
/** @brief Copy from ROM to an FP
*
@param y FP number to be copied to
@param x BIG to be copied from ROM
*/
extern void FP_rcopy(FP *y, const B256_56::BIG x);
/** @brief Compares two FPs
*
@param x FP number
@param y FP number
@return 1 if equal, else returns 0
*/
extern int FP_equals(FP *x, FP *y);
/** @brief Conditional constant time swap of two FP numbers
*
Conditionally swaps parameters in constant time (without branching)
@param x an FP number
@param y another FP number
@param s swap takes place if not equal to 0
*/
extern void FP_cswap(FP *x, FP *y, int s);
/** @brief Conditional copy of FP number
*
Conditionally copies second parameter to the first (without branching)
@param x an FP number
@param y another FP number
@param s copy takes place if not equal to 0
*/
extern void FP_cmove(FP *x, FP *y, int s);
/** @brief Converts from BIG integer to residue form mod Modulus
*
@param x BIG number to be converted
@param y FP result
*/
extern void FP_nres(FP *y, B256_56::BIG x);
/** @brief Converts from residue form back to BIG integer form
*
@param y FP number to be converted to BIG
@param x BIG result
*/
extern void FP_redc(B256_56::BIG x, FP *y);
/** @brief Sets FP to representation of unity in residue form
*
@param x FP number to be set equal to unity.
*/
extern void FP_one(FP *x);
/** @brief returns "sign" of an FP
*
@param x FP number
@return 0 for positive, 1 for negative
*/
extern int FP_sign(FP *x);
/** @brief Reduces DBIG to BIG exploiting special form of the modulus
*
This function comes in different flavours depending on the form of Modulus that is currently in use.
@param r BIG number, on exit = d mod Modulus
@param d DBIG number to be reduced
*/
extern void FP_mod(B256_56::BIG r, B256_56::DBIG d);
#ifdef FUSED_MODMUL
extern void FP_modmul(B256_56::BIG, B256_56::BIG, B256_56::BIG);
#endif
/** @brief Fast Modular multiplication of two FPs, mod Modulus
*
Uses appropriate fast modular reduction method
@param x FP number, on exit the modular product = y*z mod Modulus
@param y FP number, the multiplicand
@param z FP number, the multiplier
*/
extern void FP_mul(FP *x, FP *y, FP *z);
/** @brief Fast Modular multiplication of an FP, by a small integer, mod Modulus
*
@param x FP number, on exit the modular product = y*i mod Modulus
@param y FP number, the multiplicand
@param i a small number, the multiplier
*/
extern void FP_imul(FP *x, FP *y, int i);
/** @brief Fast Modular squaring of an FP, mod Modulus
*
Uses appropriate fast modular reduction method
@param x FP number, on exit the modular product = y^2 mod Modulus
@param y FP number, the number to be squared
*/
extern void FP_sqr(FP *x, FP *y);
/** @brief Modular addition of two FPs, mod Modulus
*
@param x FP number, on exit the modular sum = y+z mod Modulus
@param y FP number
@param z FP number
*/
extern void FP_add(FP *x, FP *y, FP *z);
/** @brief Modular subtraction of two FPs, mod Modulus
*
@param x FP number, on exit the modular difference = y-z mod Modulus
@param y FP number
@param z FP number
*/
extern void FP_sub(FP *x, FP *y, FP *z);
/** @brief Modular division by 2 of an FP, mod Modulus
*
@param x FP number, on exit =y/2 mod Modulus
@param y FP number
*/
extern void FP_div2(FP *x, FP *y);
/** @brief Fast Modular exponentiation of an FP, to the power of a BIG, mod Modulus
*
@param x FP number, on exit = y^z mod Modulus
@param y FP number
@param z BIG number exponent
*/
extern void FP_pow(FP *x, FP *y, B256_56::BIG z);
/** @brief Inverse square root precalculation
*
@param r FP number, on exit = x^(p-2*e-1)/2^(e+1) mod Modulus
@param x FP number
*/
extern void FP_progen(FP *r,FP *x);
/** @brief Fast Modular square root of a an FP, mod Modulus
*
@param x FP number, on exit = sqrt(y) mod Modulus
@param y FP number, the number whose square root is calculated
@param h an optional input precalculation
*/
extern void FP_sqrt(FP *x, FP *y, FP *h);
/** @brief Modular negation of a an FP, mod Modulus
*
@param x FP number, on exit = -y mod Modulus
@param y FP number
*/
extern void FP_neg(FP *x, FP *y);
/** @brief Outputs an FP number to the console
*
Converts from residue form before output
@param x an FP number
*/
extern void FP_output(FP *x);
/** @brief Outputs an FP number to the console, in raw form
*
@param x a BIG number
*/
extern void FP_rawoutput(FP *x);
/** @brief Reduces possibly unreduced FP mod Modulus
*
@param x FP number, on exit reduced mod Modulus
*/
extern void FP_reduce(FP *x);
/** @brief normalizes FP
*
@param x FP number, on exit normalized
*/
extern void FP_norm(FP *x);
/** @brief Tests for FP a quadratic residue mod Modulus
*
@param x FP number to be tested
@param h an optional output precalculation
@return 1 if quadratic residue, else returns 0 if quadratic non-residue
*/
extern int FP_qr(FP *x,FP *h);
/** @brief Simultaneous Inverse and Square root
*
@param i FP number, on exit = 1/x mod Modulus
@param s FP number, on exit = sqrt(x) mod Modulus
@param x FP number
@return 1 if quadratic residue, else returns 0 if quadratic non-residue
*/
extern int FP_invsqrt(FP *i,FP *s,FP *x);
/** @brief Simultaneous Inverse and Square root of different numbers
*
@param i FP number, on exit = 1/i mod Modulus
@param s FP number, on exit = sqrt(s) mod Modulus
@return 1 if quadratic residue, else returns 0 if quadratic non-residue
*/
extern int FP_tpo(FP* i, FP* s);
/** @brief Modular inverse of a an FP, mod Modulus
*
@param x FP number, on exit = 1/y mod Modulus
@param y FP number
@param h an optional input precalculation
*/
extern void FP_inv(FP *x, FP *y, FP *h);
/** @brief Special exponent of an FP, mod Modulus
*
@param x FP number, on exit = x^s mod Modulus
@param y FP number
*/
extern void FP_fpow(FP *x, FP *y);
/** @brief Generate random FP
*
@param x random FP number
@param rng random number generator
*/
extern void FP_rand(FP *x, core::csprng *rng);
}
#endif