openl3 svm

This commit is contained in:
em474re 2021-09-07 14:44:25 +02:00
parent 4b834fab47
commit 02feb535b3
4 changed files with 688 additions and 0 deletions

143
src/svm_openl3.py Normal file
View File

@ -0,0 +1,143 @@
from sklearn.svm import LinearSVC
from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.model_selection import PredefinedSplit, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix, recall_score, make_scorer, plot_confusion_matrix
# import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
RANDOM_SEED = 42
GRID = [
{'scaler': [StandardScaler(), None],
'estimator': [LinearSVC(random_state=RANDOM_SEED)],
'estimator__loss': ['squared_hinge'],
'estimator__C': np.logspace(-1, -5, num=5),
'estimator__class_weight': ['balanced', None],
'estimator__max_iter': [1000]
}
]
PIPELINE = Pipeline([('scaler', None), ('estimator', LinearSVC(dual=True))])
def sta_fun_2(npdata): # 1D np array
"""Extract various statistical features from the numpy array provided as input.
:param np_data: the numpy array to extract the features from
:type np_data: numpy.ndarray
:return: The extracted features as a vector
:rtype: numpy.ndarray
"""
# perform a sanity check
if npdata is None:
raise ValueError("Input array cannot be None")
# perform the feature extraction
Mean = np.mean(npdata, axis=0)
Std = np.std(npdata, axis=0)
# finally return the features in a concatenated array (as a vector)
return np.concatenate((Mean, Std), axis=0).reshape(1, -1)
if __name__ == '__main__':
# load openL3 features and labels
files = os.listdir('./features/openl3/train/')
filenames = ['./features/openl3/train/' + f for f in files]
X_train = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_train.extend(sta_fun_2(emb))
X_train = np.array(X_train, dtype=object)
files = os.listdir('./features/openl3/test/')
filenames = ['./features/openl3/test/' + f for f in files]
X_test = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_test.extend(sta_fun_2(emb))
X_test = np.array(X_test, dtype=object)
files = os.listdir('./features/openl3/devel/')
filenames = ['./features/openl3/devel/' + f for f in files]
X_devel = [np.load(fname)['embedding'] for fname in filenames]
X_devel = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_devel.extend(sta_fun_2(emb))
X_devel = np.array(X_devel, dtype=object)
df = pd.read_csv('./dist/lab/train.csv', sep=',')
y_train = df.label
df = pd.read_csv('./dist/lab/test.csv', sep=',')
y_test = df.label
df = pd.read_csv('./dist/lab/devel.csv', sep=',')
y_devel = df.label
num_train = X_train.shape[0]
num_devel = X_devel.shape[0]
split_indices = np.repeat([-1, 0], [num_train, num_devel])
split = PredefinedSplit(split_indices)
train_X = np.squeeze(X_train)
devel_X = np.squeeze(X_devel)
test_X = np.squeeze(X_test)
X = np.append(train_X, devel_X, axis=0)
y = np.append(y_train, y_devel, axis=0)
grid_search = GridSearchCV(estimator=PIPELINE, param_grid=GRID,
scoring=make_scorer(
recall_score, average='macro'),
n_jobs=-1, cv=split, refit=True, verbose=1,
return_train_score=False)
# find best estimator with grid search
grid_search.fit(np.asarray(X), y)
best_estimator = grid_search.best_estimator_
# fit clone of best estimator on train again for devel predictions
estimator = clone(best_estimator, safe=False)
estimator.fit(train_X, y_train)
preds = estimator.predict(devel_X)
metrics = {'dev': {}, 'test': {}}
# devel results
print('DEVEL')
uar = recall_score(y_devel, preds, average='macro')
cm = confusion_matrix(y_devel, preds)
print(
f'UAR: {uar}\n{classification_report(y_devel, preds)}\n\nConfusion Matrix:\n\n{cm}')
# optional write grid_search to csv file
# pd.DataFrame(grid_search.cv_results_).to_csv('grid_search.csv', index=False)
# test results
print('TEST')
preds = best_estimator.predict(test_X)
uar = recall_score(y_test, preds, average='macro')
cm = confusion_matrix(y_test, preds)
print(f'UAR: {uar}\n{classification_report(y_test, preds)}\n\nConfusion Matrix:\n\n{cm}')
fig = plt.figure()
plot_confusion_matrix(best_estimator, X=test_X, y_true=y_test, cmap=plt.cm.Blues, display_labels=[
'Negative', 'Positive'], normalize='true')
plt.ylabel('True Label')
plt.xlabel('Predicated Label')
plt.savefig('cm_svm_openL3.jpg')

193
src/svm_openl3_all.py Normal file
View File

@ -0,0 +1,193 @@
from sklearn.svm import LinearSVC
from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.model_selection import PredefinedSplit, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix, recall_score, make_scorer, plot_confusion_matrix
# import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
RANDOM_SEED = 42
GRID = [
{'scaler': [StandardScaler(), None],
'estimator': [LinearSVC(random_state=RANDOM_SEED)],
'estimator__loss': ['squared_hinge'],
'estimator__C': np.logspace(-1, -5, num=5),
'estimator__class_weight': ['balanced', None],
'estimator__max_iter': [1000]
}
]
PIPELINE = Pipeline([('scaler', None), ('estimator', LinearSVC(dual=True))])
def sta_fun_2(npdata): # 1D np array
"""Extract various statistical features from the numpy array provided as input.
:param np_data: the numpy array to extract the features from
:type np_data: numpy.ndarray
:return: The extracted features as a vector
:rtype: numpy.ndarray
"""
# perform a sanity check
if npdata is None:
raise ValueError("Input array cannot be None")
# perform the feature extraction
Mean = np.mean(npdata, axis=0)
Std = np.std(npdata, axis=0)
# finally return the features in a concatenated array (as a vector)
return np.concatenate((Mean, Std), axis=0).reshape(1, -1)
if __name__=='__main__':
# load features and labels
files = os.listdir('./features/openl3/train/')
filenames = ['./features/openl3/train/' + f for f in files]
X_train_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_train_openl3.extend(sta_fun_2(emb))
X_train_openl3 = np.array(X_train_openl3,dtype=object)
files = os.listdir('./features/openl3/test/')
filenames = ['./features/openl3/test/' + f for f in files]
X_test_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_test_openl3.extend(sta_fun_2(emb))
X_test_openl3 = np.array(X_test_openl3,dtype=object)
files = os.listdir('./features/openl3/devel/')
filenames = ['./features/openl3/devel/' + f for f in files]
X_devel_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_devel_openl3.extend(sta_fun_2(emb))
X_devel_openl3 = np.array(X_devel_openl3,dtype=object)
df = pd.read_csv('./dist/lab/train.csv', sep =',')
y_train = df.label
df = pd.read_csv('./dist/lab/test.csv', sep =',')
y_test = df.label
df = pd.read_csv('./dist/lab/devel.csv', sep =',')
y_devel = df.label
devel_X_vgg = np.load(
"./features/vgg_features/x_devel_data_vgg.npy", allow_pickle=True
)
test_X_vgg = np.load(
"./features/vgg_features/x_test_data_vgg.npy", allow_pickle=True
)
train_X_vgg = np.load(
"./features/vgg_features/x_train_data_vgg.npy", allow_pickle=True
)
devel_X_hand = np.load(
"./features/hand_features/x_devel_data.npy", allow_pickle=True
)
test_X_hand = np.load(
"./features/hand_features/x_test_data.npy", allow_pickle=True
)
train_X_hand = np.load(
"./features/hand_features/x_train_data.npy", allow_pickle=True
)
num_train = train_X_vgg.shape[0]
num_devel = devel_X_vgg.shape[0]
split_indices = np.repeat([-1, 0], [num_train, num_devel])
split = PredefinedSplit(split_indices)
train_X_openl3 = np.squeeze(X_train_openl3)
devel_X_openl3 = np.squeeze(X_devel_openl3)
test_X_openl3 = np.squeeze(X_test_openl3)
train_X_vgg = np.squeeze(train_X_vgg)
devel_X_vgg = np.squeeze(devel_X_vgg)
test_X_vgg = np.squeeze(test_X_vgg)
devel_X = np.concatenate(
(
devel_X_hand,
devel_X_vgg,
devel_X_openl3
),
axis=1,
)
test_X = np.concatenate(
(
test_X_hand,
test_X_vgg,
test_X_openl3
),
axis=1,
)
train_X = np.concatenate(
(
train_X_hand,
train_X_vgg,
train_X_openl3
),
axis=1,
)
X = np.append(train_X, devel_X, axis=0)
y = np.append(y_train, y_devel, axis=0)
grid_search = GridSearchCV(estimator=PIPELINE, param_grid=GRID,
scoring=make_scorer(recall_score, average='macro'),
n_jobs=-1, cv=split, refit=True, verbose=1,
return_train_score=False)
# find best estimator with grid search
grid_search.fit(X,y)
best_estimator = grid_search.best_estimator_
# fit clone of best estimator on train again for devel predictions
estimator = clone(best_estimator, safe=False)
estimator.fit(train_X, y_train)
preds = estimator.predict(devel_X)
metrics = {'dev': {}, 'test': {}}
# devel results
print('DEVEL')
uar = recall_score(y_devel, preds, average='macro')
cm = confusion_matrix(y_devel, preds)
print(f'UAR: {uar}\n{classification_report(y_devel, preds)}\n\nConfusion Matrix:\n\n{cm}')
# optional write grid_search to csv file
# pd.DataFrame(grid_search.cv_results_).to_csv('grid_search.csv', index=False)
# test results
print('TEST')
preds = best_estimator.predict(test_X)
uar = recall_score(y_test, preds, average='macro')
cm = confusion_matrix(y_test, preds)
print(f'UAR: {uar}\n{classification_report(y_test, preds)}\n\nConfusion Matrix:\n\n{cm}')
fig = plt.figure()
plot_confusion_matrix(best_estimator, X=test_X, y_true=y_test, cmap=plt.cm.Blues, display_labels=[
'Negative', 'Positive'], normalize='true')
plt.ylabel('True Label')
plt.xlabel('Predicated Label')
plt.savefig('cm_svm_all.jpg')

174
src/svm_openl3_hand.py Normal file
View File

@ -0,0 +1,174 @@
from sklearn.svm import LinearSVC
from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.model_selection import PredefinedSplit, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix, recall_score, make_scorer, plot_confusion_matrix
# import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
RANDOM_SEED = 42
GRID = [
{'scaler': [StandardScaler(), None],
'estimator': [LinearSVC(random_state=RANDOM_SEED)],
'estimator__loss': ['squared_hinge'],
'estimator__C': np.logspace(-1, -5, num=5),
'estimator__class_weight': ['balanced', None],
'estimator__max_iter': [1000]
}
]
PIPELINE = Pipeline([('scaler', None), ('estimator', LinearSVC(dual=True))])
def sta_fun_2(npdata): # 1D np array
"""Extract various statistical features from the numpy array provided as input.
:param np_data: the numpy array to extract the features from
:type np_data: numpy.ndarray
:return: The extracted features as a vector
:rtype: numpy.ndarray
"""
# perform a sanity check
if npdata is None:
raise ValueError("Input array cannot be None")
# perform the feature extraction
Mean = np.mean(npdata, axis=0)
Std = np.std(npdata, axis=0)
# finally return the features in a concatenated array (as a vector)
return np.concatenate((Mean, Std), axis=0).reshape(1, -1)
if __name__=='__main__':
# load handcrafted and openL3 features and labels
files = os.listdir('./features/openl3/train/')
filenames = ['./features/openl3/train/' + f for f in files]
X_train_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_train_openl3.extend(sta_fun_2(emb))
X_train_openl3 = np.array(X_train_openl3,dtype=object)
files = os.listdir('./features/openl3/test/')
filenames = ['./features/openl3/test/' + f for f in files]
X_test_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_test_openl3.extend(sta_fun_2(emb))
X_test_openl3 = np.array(X_test_openl3,dtype=object)
files = os.listdir('./features/openl3/devel/')
filenames = ['./features/openl3/devel/' + f for f in files]
X_devel_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_devel_openl3.extend(sta_fun_2(emb))
X_devel_openl3 = np.array(X_devel_openl3,dtype=object)
df = pd.read_csv('./dist/lab/train.csv', sep =',')
y_train = df.label
df = pd.read_csv('./dist/lab/test.csv', sep =',')
y_test = df.label
df = pd.read_csv('./dist/lab/devel.csv', sep =',')
y_devel = df.label
devel_X_hand = np.load(
"./features/hand_features/x_devel_data.npy", allow_pickle=True
)
test_X_hand = np.load(
"./features/hand_features/x_test_data.npy", allow_pickle=True
)
train_X_hand = np.load(
"./features/hand_features/x_train_data.npy", allow_pickle=True
)
num_train = train_X_hand.shape[0]
num_devel = devel_X_hand.shape[0]
split_indices = np.repeat([-1, 0], [num_train, num_devel])
split = PredefinedSplit(split_indices)
train_X_openl3 = np.squeeze(X_train_openl3)
devel_X_openl3 = np.squeeze(X_devel_openl3)
test_X_openl3 = np.squeeze(X_test_openl3)
devel_X = np.concatenate(
(
devel_X_hand,
devel_X_openl3
),
axis=1,
)
test_X = np.concatenate(
(
test_X_hand,
test_X_openl3
),
axis=1,
)
train_X = np.concatenate(
(
train_X_hand,
train_X_openl3
),
axis=1,
)
X = np.append(train_X, devel_X, axis=0)
y = np.append(y_train, y_devel, axis=0)
grid_search = GridSearchCV(estimator=PIPELINE, param_grid=GRID,
scoring=make_scorer(recall_score, average='macro'),
n_jobs=-1, cv=split, refit=True, verbose=1,
return_train_score=False)
# find best estimator with grid search
grid_search.fit(X,y)
best_estimator = grid_search.best_estimator_
# fit clone of best estimator on train again for devel predictions
estimator = clone(best_estimator, safe=False)
estimator.fit(train_X, y_train)
preds = estimator.predict(devel_X)
metrics = {'dev': {}, 'test': {}}
# devel results
print('DEVEL')
uar = recall_score(y_devel, preds, average='macro')
cm = confusion_matrix(y_devel, preds)
print(f'UAR: {uar}\n{classification_report(y_devel, preds)}\n\nConfusion Matrix:\n\n{cm}')
# optional write grid_search to csv file
# pd.DataFrame(grid_search.cv_results_).to_csv('grid_search.csv', index=False)
# test results
print('TEST')
preds = best_estimator.predict(test_X)
uar = recall_score(y_test, preds, average='macro')
cm = confusion_matrix(y_test, preds)
print(f'UAR: {uar}\n{classification_report(y_test, preds)}\n\nConfusion Matrix:\n\n{cm}')
fig = plt.figure()
plot_confusion_matrix(best_estimator, X=test_X, y_true=y_test, cmap=plt.cm.Blues, display_labels=[
'Negative', 'Positive'], normalize='true')
plt.ylabel('True Label')
plt.xlabel('Predicated Label')
plt.savefig('cm_svm_openL3_hand.jpg')

178
src/svm_openl3_vgg.py Normal file
View File

@ -0,0 +1,178 @@
from sklearn.svm import LinearSVC
from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.model_selection import PredefinedSplit, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix, recall_score, make_scorer, plot_confusion_matrix
# import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import pandas as pd
RANDOM_SEED = 42
GRID = [
{'scaler': [StandardScaler(), None],
'estimator': [LinearSVC(random_state=RANDOM_SEED)],
'estimator__loss': ['squared_hinge'],
'estimator__C': np.logspace(-1, -5, num=5),
'estimator__class_weight': ['balanced', None],
'estimator__max_iter': [1000]
}
]
PIPELINE = Pipeline([('scaler', None), ('estimator', LinearSVC(dual=True))])
def sta_fun_2(npdata): # 1D np array
"""Extract various statistical features from the numpy array provided as input.
:param np_data: the numpy array to extract the features from
:type np_data: numpy.ndarray
:return: The extracted features as a vector
:rtype: numpy.ndarray
"""
# perform a sanity check
if npdata is None:
raise ValueError("Input array cannot be None")
# perform the feature extraction
Mean = np.mean(npdata, axis=0)
Std = np.std(npdata, axis=0)
# finally return the features in a concatenated array (as a vector)
return np.concatenate((Mean, Std), axis=0).reshape(1, -1)
if __name__=='__main__':
# load handcrafted and openL3 features and labels
files = os.listdir('./features/openl3/train/')
filenames = ['./features/openl3/train/' + f for f in files]
X_train_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_train_openl3.extend(sta_fun_2(emb))
X_train_openl3 = np.array(X_train_openl3,dtype=object)
files = os.listdir('./features/openl3/test/')
filenames = ['./features/openl3/test/' + f for f in files]
X_test_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_test_openl3.extend(sta_fun_2(emb))
X_test_openl3 = np.array(X_test_openl3,dtype=object)
files = os.listdir('./features/openl3/devel/')
filenames = ['./features/openl3/devel/' + f for f in files]
X_devel_openl3 = []
for i in range(len(filenames)):
emb = np.load(filenames[i])['embedding']
X_devel_openl3.extend(sta_fun_2(emb))
X_devel_openl3 = np.array(X_devel_openl3,dtype=object)
df = pd.read_csv('./dist/lab/train.csv', sep =',')
y_train = df.label
df = pd.read_csv('./dist/lab/test.csv', sep =',')
y_test = df.label
df = pd.read_csv('./dist/lab/devel.csv', sep =',')
y_devel = df.label
devel_X_vgg = np.load(
"./features/vgg_features/x_devel_data_vgg.npy", allow_pickle=True
)
test_X_vgg = np.load(
"./features/vgg_features/x_test_data_vgg.npy", allow_pickle=True
)
train_X_vgg = np.load(
"./features/vgg_features/x_train_data_vgg.npy", allow_pickle=True
)
num_train = train_X_vgg.shape[0]
num_devel = devel_X_vgg.shape[0]
split_indices = np.repeat([-1, 0], [num_train, num_devel])
split = PredefinedSplit(split_indices)
train_X_openl3 = np.squeeze(X_train_openl3)
devel_X_openl3 = np.squeeze(X_devel_openl3)
test_X_openl3 = np.squeeze(X_test_openl3)
train_X_vgg = np.squeeze(train_X_vgg)
devel_X_vgg = np.squeeze(devel_X_vgg)
test_X_vgg = np.squeeze(test_X_vgg)
devel_X = np.concatenate(
(
devel_X_vgg,
devel_X_openl3
),
axis=1,
)
test_X = np.concatenate(
(
test_X_vgg,
test_X_openl3
),
axis=1,
)
train_X = np.concatenate(
(
train_X_vgg,
train_X_openl3
),
axis=1,
)
X = np.append(train_X, devel_X, axis=0)
y = np.append(y_train, y_devel, axis=0)
grid_search = GridSearchCV(estimator=PIPELINE, param_grid=GRID,
scoring=make_scorer(recall_score, average='macro'),
n_jobs=-1, cv=split, refit=True, verbose=1,
return_train_score=False)
# find best estimator with grid search
grid_search.fit(X,y)
best_estimator = grid_search.best_estimator_
# fit clone of best estimator on train again for devel predictions
estimator = clone(best_estimator, safe=False)
estimator.fit(train_X, y_train)
preds = estimator.predict(devel_X)
metrics = {'dev': {}, 'test': {}}
# devel results
print('DEVEL')
uar = recall_score(y_devel, preds, average='macro')
cm = confusion_matrix(y_devel, preds)
print(f'UAR: {uar}\n{classification_report(y_devel, preds)}\n\nConfusion Matrix:\n\n{cm}')
# optional write grid_search to csv file
# pd.DataFrame(grid_search.cv_results_).to_csv('grid_search.csv', index=False)
# test results
print('TEST')
preds = best_estimator.predict(test_X)
uar = recall_score(y_test, preds, average='macro')
cm = confusion_matrix(y_test, preds)
print(f'UAR: {uar}\n{classification_report(y_test, preds)}\n\nConfusion Matrix:\n\n{cm}')
fig = plt.figure()
plot_confusion_matrix(best_estimator, X=test_X, y_true=y_test, cmap=plt.cm.Blues, display_labels=[
'Negative', 'Positive'], normalize='true')
plt.ylabel('True Label')
plt.xlabel('Predicated Label')
plt.savefig('cm_svm_openL3_vgg.jpg')